scholarly journals Molecular modeling and molecular dynamics simulation study of the human Rab9 and RhoBTB3 C-terminus complex

2014 ◽  
Vol 10 (12) ◽  
pp. 757-763 ◽  
Author(s):  
Muhammad Junaid ◽  
◽  
Ziyad Tariq Muhseen ◽  
Ata Ullah ◽  
Abdul Wadood ◽  
...  
Author(s):  
A. S. Sony ◽  
Xavier Suresh

Aims: To study the anticancer potential of benzodiazole derivatives using molecular modeling studies. Study Design: Molecular Dynamics simulation study. Place and Duration of Study: Sathyabama Institute of Science and Technology (SIST), Chennai, between June 2020 and August 2020. Methodology: We studied the anticancer potential of benzodiazole derivatives using molecular modeling. Docking studies of the ligands with EGFR protein 1M17 was carried out using AutoDock.Molecular Dynamics simulation study was carried out using Playmolecule was used to verify the stability of the protein-ligand complex. Results: Molecular docking studies showed a good binding affinity of the ligands with the protein 1m17. Benzodiazole derivative 4,6-dichloro-2-(trifluoromethyl)-1H-1,3-benzodiazole exhibited the lowest binding energy of (-6.42 kcal/mol) at the active site of EGFR (PDB code:1M17) consistent with its least inhibition coefficient (Ki =32.54 uM). Molecular dynamics simulation showed better stability of the ligand and protein complex. Conclusion: Molecular modeling study of selected benzodiazole derivatives showed a very good binding affinity to EGFR protein 1m17. MD simulation of the best-docked ligand showed that the complex was stable. Our study demonstrated that benzodiazole derivatives can be potential anticancer drug candidates


Sign in / Sign up

Export Citation Format

Share Document