scholarly journals Alkali-silica reaction and high performance concrete

Author(s):  
Chiara F Ferraris
2009 ◽  
Vol 405-406 ◽  
pp. 24-29 ◽  
Author(s):  
Ke Liang Li ◽  
Xiu Sheng Tang ◽  
Guo Hong Huang ◽  
Hui Xu

Performing the superposition effect of multi-elements mineral admixtures, high performance concrete (HPC) with 3% of silicon fume, 20% of fly ash and 40% of ground granulated blast-furnace slag (GGBS) was prepared, and its physical and mechanical properties and durability were studied systematically. The compressive strength and tensile strength of HPC are better than those of ordinary concrete. HPC has high compactness with smaller gas diffusion coefficient and relative permeability coefficient. Adding volume stabilizer and controlling the contents of SO3 in the GGBS and volume stabilizer at 3%, can reduce dry shrinkages effectively. Large mount of mineral admixture was used to make the concentrations of K+ and Na+ in the pore solution and the expansion caused by alkali-silica reaction depress greatly. So the alkali-silica reaction gets controlled markedly. The effective diffusion coefficient of chloride ion is 1.96×10-12 m2/s, which means HPC has a favorable chloride ion penetration resistance. After 15 times of wet-dry cycle, the rates of the rust area and quality loss of the reinforcing steel bars in HPC are only 4.1% and 0.05% respectively, so HPC has better performance of steel protection. The mortar bar did not expand in corrosive sodium sulfate solution, and it means HPC has better performance of sulfate resistance. The performances of frost resistance and carbonation resistance of HPC are also favorable. It’s proved in tests that the superposition effect of multi-elements mineral admixtures can enhance the physical and mechanical properties and durability of concrete greatly.


PCI Journal ◽  
2001 ◽  
Vol 46 (1) ◽  
pp. 79-81
Author(s):  
John J. Roller ◽  
Robert N. Bruce ◽  
Henry G. Russell

PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document