Effect of Partial Replacement of Cement with Silica Fume and Cellulose Fibre on Workability & Compressive Strength of High Performance Concrete

2011 ◽  
Vol 3 (7) ◽  
pp. 263-264
Author(s):  
Pratik Patel ◽  
◽  
Dr. Indrajit N Patel
2019 ◽  
Vol 292 ◽  
pp. 108-113 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Roman Chylík ◽  
Zdeněk Prošek

The paper describes an experimental program focused on the research of high performance concrete with partial replacement of cement by fly ash. Four mixtures were investigated: reference mixture and mixtures with 10 %, 20 % and 30 % cement weight replaced by fly ash. In the first stage, the effect of cement replacement was observed. The second phase aimed at the influence of homogenization process for the selected 30% replacement on concrete properties. The analysis of macroscopic properties followed compressive strength, elastic modulus and depth of penetration of water under pressure. Microscopic analysis concentrated on the study of elastic modulus, porosity and mineralogical composition of cement matrix using scanning electron microscopy, spectral analysis and nanoindentation. The macroscopic results showed that the replacement of cement by fly ash notably improved compressive strength of concrete and significantly decreased the depth of penetration of water under pressure, while the improvement rate increased with increasing cement replacement (strength improved by 18 %, depth of penetration by 95 % at 30% replacement). Static elastic modulus was practically unaffected. Microscopic investigation showed impact of fly ash on both structure and phase mechanical performance of the material.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
E. H. Kadri ◽  
S. Aggoun ◽  
S. Kenai ◽  
A. Kaci

The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.


2014 ◽  
Vol 627 ◽  
pp. 445-448 ◽  
Author(s):  
Young Il Jang ◽  
Wan Shin Park ◽  
Sun Woong Kim ◽  
Song Hui Yun ◽  
Hyun Do Yun ◽  
...  

This paper addresses the influence of cold weather on the compressive strength of high performance concrete with silica fume under different curing days. Test variables of this study are weather condition (5°C, -5°C and-15°C) and different curing days (7days and 28 days). In this work, the specimen was designed a water-binder ratio of 0.34. One batches of concrete were prepared for each mixing hour, and the compressive strength of cylindrical concrete specimens was measured after 7 and 28 days. Test results for concrete compressive strength show that the concrete’s best mechanical performance occurred when there was the least difference between ambient temperature and concrete temperature, that is, during the later hours of the day in hot weather conditions.


2021 ◽  
Vol 72 (1) ◽  
pp. 76-83
Author(s):  
Lam Le Hong ◽  
Lam Dao Duy ◽  
Huu Pham Duy

The demand for High Performance Concrete (HPC) is steadily increasing with massive developments. Conventionally, it is possible to use industrial products such as silica fume (SF), fly ash, as supplementary cementitious materials (SCM), to enhance the attributes of HPC. In recent years, nano-silica (NS) is used as an additive in added mainly to fill up the deviation arises with the addition of SF for HPC. This study aims to optimize the proportion of NS (produced in Vietnam) in the mixture used for fabricating 70 MPa high-performance concrete. SiO2 powder with particle size from 10 to 15 nm were used for mixing. A series of compressive strength test of HPC with nano-SiO2 varied from 0 to 2.8 percent of total of all binders (0%, 1.2%, 2%, 2.8%), and the fixed percentage of silica fume at 8% were proposed. Results show compressive strength increases with the increase of nano-SiO2, but this increase stops after reaching 2%. And at day 28 of the curing period, only concrete mixture containing of 8% silica fume and 2% nano-SiO2, had the highest compressive strength.


2016 ◽  
Vol 677 ◽  
pp. 98-102 ◽  
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

Durability and high strength of concrete are closely associated with low porosity and generally denser material structure. This is achieved using the addition, which include also silica fume. This article deal with an effective dosage of silica fume in high performance concrete, in a proportion of 0-25 % by the weight of cement. Compressive strength, rheological behaviour and economic benefits were the main questions in this work. The expected increase in compressive strength showed itself in lower doses of silica fume, while higher doses did not produce a further increase in strength. In the case of rheological behaviour, we can confirm lower bleeding and segregation, but also faster drying of the surface layer. From the economic point of view, a small doses of silica fume are better, because then we have observed the highest increase in strength.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


Vestnik MGSU ◽  
2019 ◽  
pp. 102-117 ◽  
Author(s):  
Duc Vinh Quang Nguyen ◽  
Olga V. Aleksandrova ◽  
Yuriy M. Bazhenov

Introduction. This study focuses on the use of silica fume partially replacing cement with 0, 5, 7.5, 10, 12.5 and 30 % constant replacement of fly ash by weight of cement in concrete. Concrete is probably the most extensively used construction material in the world. But the conventional concrete is losing its uses with time and high-performance concrete (HPC) is taking that place. HPC has superior mechanical properties and durability to normal strength concrete. Because of, the microstructure of HPC is more homogeneous than that of normal concrete (NC) due to the physical and chemical contribution of the mineral admixtures as well as it is less porous due to reduced w/c ratio with the addition of a superplasticizer. The inclusion of additives helped in improving the properties of concrete mixes due to the additional reduction in porosity of cement paste and improving the particle packing in the interfacial transition zone (between cement paste and the aggregates).In this experimental investigation the behavior of HPC with silica fume and fly ash with and without quartz powder were studied. The water-binder ratio was kept 0.3 and 20 % quartz flour as partial replacement of fine aggregate for all cases. Materials and methods. Used materials in Vietnam, as follow, Sulfate-resisting Portland cement - PCSR40 (type V) of company Luks Cement (Vietnam) Limited was used in the work. Crushed granite of fraction 9.5…20 mm - as coarse aggregate, Natural sand from Huong river of 0.15…2.5 mm fraction with the fineness modulus of about 3.0 and quartz powder with an average particle size of 5…10 μm were used as fillers; Sika® Viscocrete®-151 is a superplasticizer based on a blend of 3rd generation PCE polymers was used as a plasticizing admixture. The flg ash from Pha Lai thermal power plant and Sika silica Sikacrete® PP1 (particle size < 0.1 μm) was used as a mineral active admixture. The study of strength and technological properties of high-performance concrete was performed by using standard methods. Results. Established by icate that, the workability and strength increase at a certain level and after that, they decline with further increase in the replacement level of silica fume is 12.5 %, on the basis of 30 % FA replacement, the incorporation of 10 % SF showed equivalent or higher mechanical properties and durability compared to the reference samples. Conclusions. HPC consists of mineral admixtures such as silica fume and fly ash use combine quartz powder and superplasticizer helped in improving the strength and durability of concrete mixes due to the additional reduction in porosity of cement paste and an improved interface between it and the aggregate. With 30 % fly ash is optimum dosage used to replacement of cement, incorporation 10 % SF (by weight) and combine of partial replacement of fine aggregate by 20 % quartz powder. On the other hand, a few mathematical equations can be used to derive the durability properties of concrete based on its compressive strength.


Sign in / Sign up

Export Citation Format

Share Document