A STUDY ON HIGH PRESSURE FLOW CHARACTERISTICS OF AVERAGING PITOT TUBE IN NUCLEAR POWER PLANT USING A NUMERICAL ANALYSIS

2017 ◽  
Vol 22 (4) ◽  
pp. 74-80
Author(s):  
J.H. Kim ◽  
S.H. Lee ◽  
J.H. Lee
2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


2017 ◽  
Vol 9 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Reza Saberi ◽  
Majid Alinejad ◽  
Mir Omid Mahdavi ◽  
Kamran Sepanloo

Author(s):  
Frank Kretzschmar

In the case of a severe accident in a nuclear power plant there is a residual risk, that the Reactor Pressure Vessel (RPV) does not withstand the thermal attack of the molten core material, of which the temperature can be about 3000 K. For the analysis of the processes governing melt dispersal and heating up of the containment atmosphere of a nuclear power plant in the case of such an event, it is important to know the time of the onset of gas blowthrough during the melt expulsion through the hole in the bottom of the RPV. In the test facility DISCO-C (Dispersion of Simulant Corium-Cold) at the FZK /6/, experiments were performed to furnish data for modeling Direct Containment Heating (DCH) processes in computer codes that will be used to extrapolate these results to the reactor case. DISCO-C models the RPV, the Reactor Coolant System (RCS), cavity and the annular subcompartments of a large European reactor in a scale 1:18. The liquid type, the initial liquid mass, the type of the driving gas and the size of the hole were varied in these experiments. We present results for the onset of the gas blowthrough that were reached by numerical analysis with the Multiphase-Code SIMMER. We compare the results with the experimental results from the DISCO-C experiments and with analytical correlations, given by other authors.


Atomic Energy ◽  
1994 ◽  
Vol 76 (2) ◽  
pp. 86-90
Author(s):  
V. I. Baranenko ◽  
V. S. Kirov ◽  
V. P. Kravchenko ◽  
V. A. Korovkin ◽  
N. A. Fridman

Author(s):  
S. Pal ◽  
C. Iek ◽  
L. J. Peltier ◽  
A. Smirnov ◽  
K. J. Knight ◽  
...  

High pressure superheated or saturated steam line breaks in a nuclear power plant generate high speed jet flows and blast waves. The jet loads and blast wave pressures can damage critical nuclear power plant components. An accurate assessment of these effects including uncertainty quantification (UQ), is essential to confirm that design is robust enough to handle jet flows and blast waves from postulated steam line breaks. This paper presents the verification and validation of a computational model created using a commercial CFD code for making such assessments. The verification and validation process involves the steps of application space parametrization, Phenomena Identification and Ranking (PIR), CFD model lockdown, selection of validation dataset, and calculation of formal validation metrics. The Uncertainty Quantification in the actual application should include the propagated validation uncertainties from the validation test problems.


Author(s):  
Li Ren ◽  
Peng Minjun ◽  
Xia Genglei ◽  
Zhao Yanan

The FNPP (Floating Nuclear Power Plant) expanded the application field of Integrated Pressurized Water Reactor (IPWR) in the movable marine platform, it is necessary to study the natural circulation flow characteristics in heaving motion on the ocean. From the characteristics of FNPP, by means of THEATRe code which was based on the two-phase drift flux model and was modified by adding module calculating the effect of heaving motion, the simulation model in heaving motion was built. Using the models developed, the natural circulation operating characteristics of natural circulation in heaving motion and the transitions between forced circulation and natural circulation are analyzed. In the case of amplitude limited, the periods of mass flow rate are equal to periods of heaving motion. The oscillation amplitude of mass flow rate increases with the heaving amplitude increase. In the case of period limited, the natural circulation flow rate oscillating amplitude increases with the heaving period increases. The result obtained are not only evaluating FNPP design behavior properly but also pointing out the direction to further optimum design to ensure FNPP operating safety in heaving motion.


Sign in / Sign up

Export Citation Format

Share Document