scholarly journals Extensions of $C^*$-algebras and translation invariant asymptotic homomorphisms

2007 ◽  
Vol 100 (1) ◽  
pp. 131
Author(s):  
V. Manuilov ◽  
K. Thomsen

Let $A$, $B$ be $C^*$-algebras; $A$ separable, $B$ $\sigma$-unital and stable. We introduce a notion of translation invariance for asymptotic homomorphisms from $SA=C_0(\mathsf{R})\otimes A$ to $B$ and show that the Connes-Higson construction applied to any extension of $A$ by $B$ is homotopic to a translation invariant asymptotic homomorphism. In the other direction we give a construction which produces extensions of $A$ by $B$ out of such a translation invariant asymptotic homomorphism. This leads to our main result; that the homotopy classes of extensions coincide with the homotopy classes of translation invariant asymptotic homomorphisms.

Author(s):  
Özgür Evren ◽  
Farhad Hüsseinov

Consider a dominance relation (a preorder) ≿ on a topological space X, such as the greater than or equal to relation on a function space or a stochastic dominance relation on a space of probability measures. Given a compact set K ⊆ X, we study when a continuous real function on K that is strictly monotonic with respect to ≿ can be extended to X without violating the continuity and monotonicity conditions. We show that such extensions exist for translation invariant dominance relations on a large class of topological vector spaces. Translation invariance or a vector structure are no longer needed when X is locally compact and second countable. In decision theoretic exercises, our extension theorems help construct monotonic utility functions on the universal space X starting from compact subsets. To illustrate, we prove several representation theorems for revealed or exogenously given preferences that are monotonic with respect to a dominance relation.


1989 ◽  
Vol 41 (6) ◽  
pp. 1021-1089 ◽  
Author(s):  
N. Christopher Phillips

In topology, the representable K-theory of a topological space X is defined by the formulas RK0(X) = [X,Z x BU] and RKl(X) = [X, U], where square brackets denote sets of homotopy classes of continuous maps, is the infinite unitary group, and BU is a classifying space for U. (Note that ZxBU is homotopy equivalent to the space of Fredholm operators on a separable infinite-dimensional Hilbert space.) These sets of homotopy classes are made into abelian groups by using the H-group structures on Z x BU and U. In this paper, we give analogous formulas for the representable K-theory for α-C*-algebras defined in [20].


2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


1998 ◽  
Vol 111 (1) ◽  
pp. 7-37 ◽  
Author(s):  
S. Nikonov ◽  
N. Engheta ◽  
E.N. Pugh

The kinetics of the dark-adapted salamander rod photocurrent response to flashes producing from 10 to 105 photoisomerizations (Φ) were investigated in normal Ringer's solution, and in a choline solution that clamps calcium near its resting level. For saturating intensities ranging from ∼102 to 104 Φ, the recovery phases of the responses in choline were nearly invariant in form. Responses in Ringer's were similarly invariant for saturating intensities from ∼103 to 104 Φ. In both solutions, recoveries to flashes in these intensity ranges translated on the time axis a constant amount (τc) per e-fold increment in flash intensity, and exhibited exponentially decaying “tail phases” with time constant τc. The difference in recovery half-times for responses in choline and Ringer's to the same saturating flash was 5–7 s. Above ∼104 Φ, recoveries in both solutions were systematically slower, and translation invariance broke down. Theoretical analysis of the translation-invariant responses established that τc must represent the time constant of inactivation of the disc-associated cascade intermediate (R*, G*, or PDE*) having the longest lifetime, and that the cGMP hydrolysis and cGMP-channel activation reactions are such as to conserve this time constant. Theoretical analysis also demonstrated that the 5–7-s shift in recovery half-times between responses in Ringer's and in choline is largely (4–6 s) accounted for by the calcium-dependent activation of guanylyl cyclase, with the residual (1–2 s) likely caused by an effect of calcium on an intermediate with a nondominant time constant. Analytical expressions for the dim-flash response in calcium clamp and Ringer's are derived, and it is shown that the difference in the responses under the two conditions can be accounted for quantitatively by cyclase activation. Application of these expressions yields an estimate of the calcium buffering capacity of the rod at rest of ∼20, much lower than previous estimates.


Author(s):  
James R. Morrison ◽  
P. R. Kumar

Our focus is on a class of Markov chains which have a polyhedral translation invariance property for the transition probabilities. This class can be used to model several applications of interest which feature complexities not found in usual models of queueing networks, for example failure prone manufacturing systems which are operating under hedging point policies, or enhanced wafer fab models featuring batch tools and setups or affine index policies. We present a new family of performance bounds which is more powerful both in expressive capability as well as the quality of the bounds than some earlier approaches.


2016 ◽  
Vol 27 (03) ◽  
pp. 1650023 ◽  
Author(s):  
Pierre Bieliavsky ◽  
Victor Gayral ◽  
Sergey Neshveyev ◽  
Lars Tuset

We show that two approaches to equivariant strict deformation quantization of C[Formula: see text]-algebras by actions of negatively curved Kählerian Lie groups, one based on oscillatory integrals and the other on quantizations maps defined by dual 2-cocycles, are equivalent.


2019 ◽  
Vol 38 (5) ◽  
pp. 215-232
Author(s):  
Mamoon Ahmed

Let (G; P) be a quasi-lattice ordered group. In this paper we present a modied proof of Laca and Raeburn's theorem about the covariant isometric representations of amenable quasi-lattice ordered groups [7, Theorem 3.7], by following a two stage strategy. First, we construct a universal covariant representation for a given quasi-lattice ordered group (G; P) and show that it is unique. The construction of this object is new; we have not followed either Nica's approach in [10] or Laca and Raeburn's approach in [7], although all three objects are essentially the same. Our approach is a very natural one and avoids some of the intricacies of the other approaches. Then we show if (G; P) is amenable, true representations of (G; P) generate C-algebras which are canonically isomorphic to the universal object.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050118
Author(s):  
Ouahiba Toumi ◽  
Smain Kouadik

We have built a noncommutative unitary gauge group model preserving translation invariance. It describes the interaction of the Dirac field with the gauge field. The interaction term is expanded as a power series resulting from the introduction of the inverse covariant derivative. The consistency of the model is sustained by the fact that the Ward identity holds at tree level. The pure Yang–Mills action, including the fixing term and the Faddeev–Popov ghost term were constructed. It is striking that the commutator of our covariant derivative contained the torsion tensor, in addition to the field strength from which the Yang–Mills action was built.


Author(s):  
HIROSHI TODA ◽  
ZHONG ZHANG ◽  
TAKASHI IMAMURA

The theorems, giving the condition of perfect translation invariance for discrete wavelet transforms, have already been proven. Based on these theorems, the dual-tree complex discrete wavelet transform, the 2-dimensional discrete wavelet transform, the complex wavelet packet transform, the variable-density complex discrete wavelet transform and the real-valued discrete wavelet transform, having perfect translation invariance, were proposed. However, their customizability of wavelets in the frequency domain is limited. In this paper, also based on these theorems, a new type of complex discrete wavelet transform is proposed, which achieves perfect translation invariance with high degree of customizability of wavelets in the frequency domain.


Sign in / Sign up

Export Citation Format

Share Document