scholarly journals Hypoxia-primed monocytes/macrophages enhance postinfarction myocardial repair

Theranostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 307-323
Author(s):  
Yu Zhu ◽  
Wenjuan Yang ◽  
Hailong Wang ◽  
Fuqin Tang ◽  
Yun Zhu ◽  
...  
Keyword(s):  
Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5828
Author(s):  
Kyoko Imanaka-Yoshida

Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.


2008 ◽  
Vol 6 (5) ◽  
pp. 669-686 ◽  
Author(s):  
Emil Ruvinov ◽  
Tal Dvir ◽  
Jonathan Leor ◽  
Smadar Cohen

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu Tina Zhao ◽  
Jianfeng Du ◽  
Youfang Chen ◽  
Yaoliang Tang ◽  
Gangjian Qin ◽  
...  

Biomaterials ◽  
2008 ◽  
Vol 29 (26) ◽  
pp. 3547-3556 ◽  
Author(s):  
Hao-Ji Wei ◽  
Chun-Hung Chen ◽  
Wen-Yu Lee ◽  
Iwen Chiu ◽  
Shiaw-Min Hwang ◽  
...  

2007 ◽  
Vol 31 (6) ◽  
pp. 425-433 ◽  
Author(s):  
Matthias Siepe ◽  
Marie-Noelle Giraud ◽  
Elisabeth Liljensten ◽  
Urs Nydegger ◽  
Philippe Menasche ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Fanxia Shen ◽  
Vincent Degos ◽  
Zhenying Han ◽  
Eun-Jung Choi ◽  
William L. Young ◽  
...  

Background and Objective: Endoglin (Eng) deficiency causes hereditary hemorrhagic telangiectasia (HHT) and impairs myocardial repair. Pulmonary arteriovenous malformations in HHT patients are associated with a high incidence of paradoxical embolism in the cerebral circulation and ischemic brain injury. We hypothesized that Eng deficiency exacerbates ischemic brain injury. Methods: Eng heterozygous ( Eng +/- ) mice and wild type (WT) mice underwent permanent distal middle cerebral artery occlusion (pMCAO). Infarct volume and CD68 + cells were quantified 3 days and vascular density was determined 60 days after pMCAO. Behavior was assessed by corner test and adhesive removal test at 3, 15, 30 and 60 days after pMCAO. Matrix metalloproteinase 9 (Mmp9) and Notch1 expression in bone marrow (BM)-derived macrophages from Eng +/- and WT were analyzed using real-time RT-PCR. Results: Eng +/- mice had a larger Infarct volume than WT mice (22±6% of the affected hemisphere vs. 16±6%, p=0.04). Eng +/- mice had longer adhesive-removal time (p<0.05) and more frequent turning to the lesion side than WT mice at 15, 30 and 60 days (p<0.05) after pMCAO. Both groups had similar numbers of CD68 + cells in the peri-infarct area at 3 days after pMCAO (370±80 vs 338±44 cells/mm 2 , p=0.37), but Eng +/- mice had lower peri-infarct vessel density (417±69 vs 490±52 vessels/mm 2 , p=0.05) at 60 days after pMCAO. Up-regulation of Mmp9 and Notch1 expression in response to VEGF was attenuated in Eng +/- BM-derived macrophages. Conclusions: Endoglin deficiency exacerbated brain injury and behavior dysfunction in mice after pMCAO and was associated with reduced angiogenesis. Although macrophage homing was not affected, reduced expression of two angiogenic-related genes, Mmp9 and Notch1 , by Eng +/- BM-derived macrophages suggests a potential role of these cells in recovery from an ischemic injury.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Venkata N Garikipati ◽  
Prasanna Krishnamurthy ◽  
Suresh K Verma ◽  
Alexandra R Mackie ◽  
Erin E Vaughan ◽  
...  

We hypothesized that IL-10 regulates miR-375 signaling in EPCs to enhance their survival and function in ischemic myocardium after MI. miR-375 knock down EPC were transplanted intramyocardially after induction of MI. Mice receiving EPC treated with miR-375 inhibitor showed increased number of GFP+EPCs retention that was associated with reduced EPC apoptosis in the myocardium. The engraftment of EPC into the vascular structures and the associated capillary density was significantly higher in miR-375-treated mice. The above findings further correlated with reduced infarct size, fibrosis and enhanced LV function (echocardiography) in miR-375 knock down EPC group as compared to scrambled EPC. Our in vitro studies revealed that the knockdown of miR-375 enhanced EPC proliferation, migration; tube formation ability and inhibited cell apoptosis, while the up-regulation of miR-375 with the mimic had the opposite effects. In addition, we found that miR-375 negatively regulates the expression of 3-phosphoinositide-dependent protein kinase 1 (PDK1) by directly targeting the 3'UTR of the PDK1 transcript. Interestingly, EPC isolated from IL-10-deficient mice has elevated basal levels of miR-375 and exhibited poor proliferation and tube formation ability where as miR-375 knock down in EPC isolated from IL-10 deficient mice attenuated these effects. Furthermore, transplantation of miR-375 knock down IL-10 deficient EPC after MI resulted in attenuated cardiac functions compared to scramble IL-10 deficient EPCs. Taken together, our studies suggest that IL-10 regulated miR-375 enhances EPC survival and function, associated with efficient myocardial repair via activation of PDK-1/AKT signaling cascades.


Sign in / Sign up

Export Citation Format

Share Document