scholarly journals Low-intensity Pulsed Ultrasound regulates alveolar bone homeostasis in experimental Periodontitis by diminishing Oxidative Stress: Erratum

Theranostics ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1337-1340
Author(s):  
Siqi Ying ◽  
Minmin Tan ◽  
Ge Feng ◽  
Yunchun Kuang ◽  
Duanjing Chen ◽  
...  
Theranostics ◽  
2020 ◽  
Vol 10 (21) ◽  
pp. 9789-9807
Author(s):  
Siqi Ying ◽  
Minmin Tan ◽  
Ge Feng ◽  
Yunchun Kuang ◽  
Duanjing Chen ◽  
...  

Ultrasonics ◽  
2018 ◽  
Vol 90 ◽  
pp. 166-172 ◽  
Author(s):  
Yunji Wang ◽  
Ye Qiu ◽  
Jie Li ◽  
Chunliang Zhao ◽  
Jinlin Song

2017 ◽  
Vol 87 (5) ◽  
pp. 709-716 ◽  
Author(s):  
Yuki Kasahara ◽  
Risa Usumi-Fujita ◽  
Jun Hosomichi ◽  
Sawa Kaneko ◽  
Yuji Ishida ◽  
...  

ABSTRACT Objective: To clarify whether low-intensity pulsed ultrasound (LIPUS) exposure has recovery effects on the hypofunctional periodontal ligament (PDL) and interradicular alveolar bone (IRAB). Materials and Methods: Twelve-week-old male Sprague-Dawley rats were divided into three groups (n = 5 each): a normal occlusion (C) group, an occlusal hypofunction (H) group, and an occlusal hypofunction group subjected to LIPUS (HL) treatment. Hypofunctional occlusion of the maxillary first molar (M1) of the H and HL groups was induced by the bite-raising technique. Only the HL group was irradiated with LIPUS for 5 days. The IRAB and PDL of M1 were examined by microcomputed tomography (micro-CT) analysis. To quantify mRNA expression of cytokines involved in PDL proliferation and development, real-time reverse transcription quantitative PCR (qRT-PCR) was performed for twist family bHLH transcription factor 1 (Twist1), periostin, and connective tissue growth factor (CTGF) in the PDL samples. Results: Micro-CT analysis showed that the PDL volume was decreased in the H group compared with that of the C and HL groups. Both bone volume per tissue volume (BV/TV) of IRAB was decreased in the H group compared with that in the C group. LIPUS exposure restored BV/TV in the IRAB of the HL group. qRT-PCR analysis showed that Twist1, periostin, and CTGF mRNA levels were decreased in the H group and increased in the HL group. Conclusion: LIPUS exposure reduced the atrophic changes of alveolar bone by inducing the upregulation of periostin and CTGF expression to promote PDL healing after induction of occlusal hypofunction.


2018 ◽  
Vol 45 (4) ◽  
pp. 1350-1365 ◽  
Author(s):  
Jiamin Li ◽  
Qingwei Zhang ◽  
Cong Ren ◽  
Xianxian Wu ◽  
Ying Zhang ◽  
...  

Background/Aims: Endothelial-mesenchymal transition (EndMT) has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS) is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days). Human aortic endothelial cells (HAECs) were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA) were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM) deposition that is associated with matrix metallopeptidase (MMP) proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
KiTaek Lim ◽  
Jangho Kim ◽  
Hoon Seonwoo ◽  
Soo Hyun Park ◽  
Pill-Hoon Choung ◽  
...  

Ultrasound stimulation produces significant multifunctional effects that are directly relevant to alveolar bone formation, which is necessary for periodontal healing and regeneration. We focused to find out effects of specific duty cycles and the percentage of time that ultrasound is being generated over one on/off pulse period, under ultrasound stimulation. Low-intensity pulsed ultrasound ((LIPUS) 1 MHz) with duty cycles of 20% and 50% was used in this study, and human alveolar bone-derived mesenchymal stem cells (hABMSCs) were treated with an intensity of 50 mW/cm2and exposure time of 10 min/day. hABMSCs exposed at duty cycles of 20% and 50% had similar cell viability (O.D.), which was higher (*P<0.05) than that of control cells. The alkaline phosphatase (ALP) was significantly enhanced at 1 week with LIPUS treatment in osteogenic cultures as compared to control. Gene expressions showed significantly higher expression levels of CD29, CD44, COL1, and OCN in the hABMSCs under LIPUS treatment when compared to control after two weeks of treatment. The effects were partially controlled by LIPUS treatment, indicating that modulation of osteogenesis in hABMSCs was related to the specific stimulation. Furthermore, mineralized nodule formation was markedly increased after LIPUS treatment than that seen in untreated cells. Through simple staining methods such as Alizarin red and von Kossa staining, calcium deposits generated their highest levels at about 3 weeks. These results suggest that LIPUS could enhance the cell viability and osteogenic differentiation of hABMSCs, and could be part of effective treatment methods for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document