Neural network-based compensation control for trajectory tracking of industrial robots

2015 ◽  
Vol 13 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Q Zhang ◽  
J Xiao ◽  
G Wang
Author(s):  
Yu Zhao ◽  
Xiaowen Yu ◽  
Masayoshi Tomizuka

Most industrial robots are indirect drive robots, which utilize low torque and high speed motors. Indirect drive robots have gear reducers between the motors and links. Due to the flexibility of transmission units, it is difficult to achieve high accuracy for trajectory tracking. In this paper, a neuroadaptive control, which is essentially a neural network (NN) based adaptive back-stepping control approach, is proposed to deal with this problem. The stability of the proposed approach is analysed using Lyapunov stability theory. A data-driven approach is also proposed for the training of the neural network. The effectiveness of the proposed controller is verified by simulation of both single joint and 6-axis industrial robots.


2012 ◽  
Vol 245 ◽  
pp. 24-32 ◽  
Author(s):  
Adrian Olaru ◽  
Serban Olaru ◽  
Aurel Oprean

The most important things in the dynamic research of industrial robots are the vibration behavior, the transfer function and the vibration power spectral density between some of the robot joints and components. In the world this research is made without the assisted research. In each of the study cases in this paper was used the proper virtual Fourier analyzer and was presented one new method of the assisted vibration analysis. With this research it is possible the optimal choosing the base modulus type to avoid the frequencies from the robot spectrum. In the manufacturing systems, the most important facts are the vibration behavior of the robot, the compatibility with some other components of the system. All the VI where achieved in the LabVIEW soft 8.2 version, from National Instruments, USA. This method and the created virtual LabVIEW instrumentation are generally and they are possible to apply in many other dynamic behavior research.


2021 ◽  
Author(s):  
Daiki Kato ◽  
Kenya Yoshitugu ◽  
Naoki Maeda ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Most industrial robots are taught using the teaching playback method; therefore, they are unsuitable for use in variable production systems. Although offline teaching methods have been developed, they have not been practiced because of the low accuracy of the position and posture of the end-effector. Therefore, many studies have attempted to calibrate the position and posture but have not reached a practical level, as such methods consider the joint angle when the robot is stationary rather than the features during robot motion. Currently, it is easy to obtain servo information under numerical control operations owing to the Internet of Things technologies. In this study, we propose a method for obtaining servo information during robot motion and converting it into images to find features using a convolutional neural network (CNN). Herein, a large industrial robot was used. The three-dimensional coordinates of the end-effector were obtained using a laser tracker. The positioning error of the robot was accurately learned by the CNN. We extracted the features of the points where the positioning error was extremely large. By extracting the features of the X-axis positioning error using the CNN, the joint 1 current is a feature. This indicates that the vibration current in joint 1 is a factor in the X-axis positioning error.


2021 ◽  
Author(s):  
Christian Landgraf ◽  
Kilian Ernst ◽  
Gesine Schleth ◽  
Marc Fabritius ◽  
Marco F. Huber

Sign in / Sign up

Export Citation Format

Share Document