scholarly journals Effect of Compost in Improving Soil Properties and Its Consequent Effect on Crop Production –A Review

2021 ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 72 ◽  
Author(s):  
Kabal S. Gill ◽  
Sukhdev S. Malhi ◽  
Newton Z. Lupwayi

<p>Wood ash may be used to mitigate soil acidity and improve crop production. We compared effects of wood ash and recommended fertilizers on soil properties of a Gray Luivsol, crop yields and contribution margins in southeast Peace, Alberta, Canada. The CHK (no fertilizer, inoculation or wood ash), FRT (recommended fertilizers or inoculation), ASH (wood ash rate to supply amounts of phosphorus equivalent to the FRT treatment); and ASH+N (same as ASH + N fertilizer or inoculation) treatments were applied in 2006 and 2007. Their effects were studied from 2006 to 2014. Wood ash had all the essential plant nutrients, except nitrogen. Soil samples collected in 2007, 2008 and 2013 had or tended to have higher pH, P, K, Ca, Ca:Mg ratio, S, Cu, Zn and B levels for the ASH and ASH+N treatments than the CHK and FRT treatments. In the 2006 and 2007, the seed yields were ASH+N &gt; FRT &gt; ASH &gt; CHK. The seed yields in 2008, 2010, 2012, 2013 and 2014 were greater from both the wood ash treatments than other treatments. Extra contribution margin from the ASH+N over the FRT treatment was $751/ha, i.e. $97 Mg<sup>-1</sup> of applied wood ash. Overall, wood ash reduced fertilizer expenditure and improved seed yield, contribution margin and soil properties, with residual effects observed up to seven years and likely for few more years.</p>


2012 ◽  
Vol 4 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Inma LEBRON ◽  
Milton Earl MCGIFFEN Jr ◽  
Donald Louis SUAREZ

2021 ◽  
Vol 1044 ◽  
pp. 143-150
Author(s):  
Muhammad Amir Solihin ◽  
Pujawati Suryatmana ◽  
Fajri Syahid Nurhakim ◽  
Rina Devnita ◽  
Mahfud Arifin

Intensive agricultural cultivation on Cilembu’s Inceptisols has become several soil properties problem for crop production. Nanoparticle phosphate rock and phosphate solubilizing fungi have ability to increase some soil properties content. The research aimed to observe the effect of nanoparticle phosphate rock and phosphate solubilizing fungi on soil P-potential, P-retention, C-organic and base saturation on Cilembu’s Inceptisols. The experiment arranged in Completely Randomized Design. The nanoparticle phosphate rock consisted of 4 levels. The phosphate solubilizing fungi consisted of 2 levels, and 2 replication. Soil P-Potential, P-Retention, C-organic, and Base Saturation were observed. The factors was observed after one month incubation on soil. Results showed that there were an interaction between nanoparticle phosphate rock and phosphate solubilizing fungi on the C-organic after one month incubation. Nanoparticle phosphate rock had affected on C-organic, P-potential and base saturation significantly, but had not affected on P-retention. Utilization of phosphate solubilizing fungi as soil ameliorant had affected significantly on P-potential and C-organic, but had not affected on P-retention and base saturation. Nanoparticle phosphate rock with a dose of 6% had the best effect on increase P-potential and base saturation


2019 ◽  
Vol 99 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Jason M. Lussier ◽  
Maja Krzic ◽  
Sean M. Smukler ◽  
Art A. Bomke ◽  
Drew Bondar

Grassland set-asides (GLSA) in the Fraser River delta are fields that are taken out of crop production and seeded with a mixture of grasses and legumes for 1–4 yr. During this time, the farmer is compensated with a cost-share payment to recover a portion of the financial returns that could have been earned from cash crops. The objectives of this study were to (i) evaluate the effects of GLSA on soil properties during the initial two seasons of enrollment, (ii) determine how GLSA effects differ between fields that were considered productive and unproductive, and (iii) identify soil baseline indicators and preliminary soil thresholds for predicting GLSA vegetation responses. Out of eight fields entering the program, two were considered to be unproductive and exchangeable sodium had the strongest negative relationship to GLSA aboveground biomass (r = −0.61, P = 0.0002). During the second season of GLSA establishment, the mean weight diameter of water-stable soil aggregates was consistently higher in productive GLSAs than paired annual crop rotation (ACR) fields, being 21% higher in April, 14% in July, and 19% in September after crop harvest. After two seasons of GLSA enrollment, both aeration porosity and bulk density were improved by GLSA relative to ACR fields with aeration porosity being 24% greater and bulk density 7% lower in GLSA. The results suggest that GLSA rotations in productive agricultural fields within the Fraser River delta provide an alternative to continued ACR that can improve soil structure and reduce compaction after only two seasons of establishment.


1990 ◽  
Vol 70 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. R. CARTER ◽  
R. P. WHITE ◽  
R. G. ANDREW

Minimum tillage for soils that require regular cultivation consists of reducing the degree of secondary tillage and number of passes over the field. This study was conducted to determine whether one-pass mouldboard-ploughed systems were suitable for production of silage corn (Zea mays L.) and spring cereals (Hordeum vulgare L., Triticum aestivum L.) on loam to sandy loam soils (Humo-Ferric Podzol and Gray Luvisol) in the perhumid soil climate of Prince Edward Island. The effects of reduction in secondary tillage were gauged by characterizing crop yield and nutrient content, soil properties and structure, and relative economics. Plant growth, crop yield, and nutrient content were similar in all the mouldboard-ploughed systems. Soil chemical properties were not affected by reduction in secondary tillage, but the one-pass plough system did result in a macro-aggregate distribution with a greater proportion of large soil aggregates (9.5–16 mm) and a slight reduction in soil strength over the 10- to 25-cm soil depth. Macroporosity and soil density in the top 8 cm of soil were similar between tillage systems. Reducing both the degree of secondary tillage and number of tillage operations decreased both estimated cultivation costs and time of tillage per hectare by 26 and 39%, respectively. One-pass mouldboard-ploughed systems appear suitable for annual crop production on medium-textured soils under the soil environment of Prince Edward Island. Key words: One-pass tillage, soil properties, crop growth


2020 ◽  
Author(s):  
Mariano Marcos-Pérez ◽  
Virginia Sánchez-Navarro ◽  
Raúl Zornoza

&lt;p&gt;Including legumes in intercropping systems may be regarded as a sustainable way to improve soil quality, fertility and land productivity, mostly due to facilitation processes and high rhizospheric activity which can mobilize soil nutrients for plants. Improvements in production and soil quality depend on inherent soil properties, climatic conditions, adopted management practices and fertilization, among others. The aim of this study was to assess the effect of the association between broccoli (Brassica oleracea var italica) and fava bean (Vicia fava) grown under different intercropping patterns on crop production, soil organic carbon (SOC), total nitrogen (Nt), soil aggregate stability (SAS) and soil fertility, compared to a broccoli monocrop. We defined a randomised block field experiment with three replications assessing the effect of monocropping, row 1:1 intercropping, row 2:1 intercropping and mix intercropping, with 30% reduction in fertilization in intercropped systems compared to monocrop. Soil sampling took place at harvest in February 2019. Results showed that the broccoli-fava bean intercropping significantly increased the general land production, with similar broccoli yield of 20000 kg ha&lt;sup&gt;-1 &lt;/sup&gt;in all treatments, plus 8000 kg ha&lt;sup&gt;-1&lt;/sup&gt; coming from fava bean. Crop diversification and fava bean cultivation even in monocrop significantly increased SOC and Nt compared to broccoli monocrop. SOC and Nt were 1.06% and 0.09%, respectively, for broccoli monocrop, while they had average values of 1.29% and 0.12%, respectively for the intercropped systems. SAS was also significantly affected by crop diversification, with increases in the proportion of the macroaggregates (size &gt;2 mm) with intercropping. Broccoli monocrop showed an average proportion of these macroaggregates of 9.19%, while they increased up to 17.51% in intercropped systems. CEC was not significantly affected by intercropping SAS showing almost same percentage of aggregates independently of the treatment. Available P significantly increased in intercropped systems, likely due to increased microbial activity with the simultaneous growth of the two crop species. However, no significant effect of intercropping was observed with any other nutrient (Ca, Mg, K, Mn, Cu, Fe, Zn and B), suggesting that microbial communities activated by the crop association are highly related to P mobilization but not so intensively involved in other nutrients. Thus, intercropping systems like broccoli-fava bean association can be regarded as a viable alternative for sustainable crop production while increasing soil fertility despite reducing the addition of external fertilization. However, more crop cycles are needed to confirm this trend.&lt;/p&gt;


2010 ◽  
Vol 34 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Márcio Koiti Chiba ◽  
César Hideo Nagumo ◽  
Sônia Carmela Falci Dechen

Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.


2020 ◽  
Vol 5 (2) ◽  
pp. 65-71
Author(s):  
Israt Jahan ◽  
AKM Abul Ahsan ◽  
MMR Jahangir ◽  
Mahmud Hossain ◽  
Md Anwarul Abedin

Soil physico-chemical properties are an important phenomenon for sustainable crop production and maintenance of optimum soil health. Hence, a laboratory measurement was conducted with soil samples of three years long experimental field of the Department of Soil Science, Bangladesh Agricultural University, Mymensingh to assess the changes in five selected soil physico-chemical properties viz. soil texture, bulk density, soil pH, total nitrogen and organic matter. The experiment was laid out in a split plot design with two water regimes (continuous flooding and alternate wetting & drying) in the main plots and five fertilizer treatments (N0 - control, N1- 140 kg N/ha as PU, N2- 104 kg N/ha as USG (2× 1.8 g/ 4 hills), N3 - 5 t CD + PU @ 140 kg N /ha on IPNS basis and N4- 5 t CD + USG (2× 1.8 g/ 4 hills @ 104 kg N/ha)) in the subplots under rice-rice cropping pattern with three replications. After three years, soil samples were collected at 0-5 and 5-10 cm soil depths for measuring bulk density and at 0-10 cm depth for other soil properties and analyzed. Results found that % sand, % silt, % clay, bulk density and soil pH was not changed significantly compared to initial status. Percentage of total nitrogen and organic matter was significantly affected by irrigation and fertilization. Total nitrogen (%) was higher in AWD whereas organic matter (%) was higher in CF practice. The highest total nitrogen (%) and organic matter (%) was found in N4 treatment in which USG was applied in combination with cowdung as organic manure. It can be suggested that N4 treatment was formed good combination for sustaining chemical properties of soil. Further long- term experimentation will be needed to know the changes in soil properties for sustainable crop production and improving soil health. Asian Australas. J. Biosci. Biotechnol. 2020, 5 (2), 65-71


Author(s):  
Usongo P. Ajonina ◽  
Bekumaka B. Okanyene

Oil palm cropping is rapidly expanding within Mundemba. Although they have the potential to contribute to employment and economic development, the effect of their rapid expansion on soil properties and food security is largely unknown. The objective of the study is to analyze the trend in the surface area occupied by palms and farmlands between 1980 to 2020, assess the impact of oil palm cultivation on soil properties and food security. Ground Control Points (GCPs) were taken to evaluate land-use changes and soil samples were collected from palm plantations for analysis. Interviews and questionnaires were administered to household heads to gather information on food security. Results revealed that palm plantations experienced a rapid increase from 35.52ha in 1980 to 119,171.49 in 2020. Arable land also shows a progressive increase of 101.39 ha in 1980 to 518.55 ha in 2020. A significant deterioration of soil nutrients status under palm plantations compared to the adjacent farm lands was observed. Palm cultivation has resulted in food security issues in the area due to its lucrative nature and impact on soils properties. To improve food security farmers should be educated on sustainable crop production methods and soil management techniques.


2021 ◽  
Author(s):  
Jerzy Lipiec ◽  
Boguslaw Usowicz

&lt;p&gt;Research indicates that spatial differentiation of crop yields and soil properties are largely influenced by agricultural practices and the nature of the soil itself. The aim of this study was to examine the spatial relationship between cereal (wheat and oats ) yields and soil properties related to the application of soil-improving cropping systems (SICS). Four-year experiment (2017-2020) was carried out on low productive sandy soil with application of following SICS: S1 &amp;#8211; control; S2 &amp;#8211; liming; S3 &amp;#8211; green manure/cover crops including lupine, phacelia, serradella; S4 &amp;#8211; manure and S5 &amp;#8211; manure, liming and cover crops together. Effect of the SICS was evaluated using classical statistics, Bland-Altman analysis and geostatistical methods. Mathematical functions, fitted to the experimental cross- and semivariograms were used for mapping the yields (grain and straw) by ordinary cokriging. The grain yields in years with normal rainfall increased by 2% for S2, 10% for S3, 46% for S4, 47% for S5 compared to control (S1) 2789 kg/ha and in dry years were lower (respectively for S2-S5 by 16.3, 10.6, 2.8, 9.9% compared to control 1567 kg/ha. The range of spatial dependence for the yields in direct semi-variograms varied was 50&amp;#8211;100 m and &gt; 100 m in cross-semivariograms using textural fractions as secondary variables. The spatial relationships were stronger between yield and soil texture and properties were much stronger with texture and cation exchange capacity than with pH and organic carbon content. Using cokriging for interpolation (mapping) allowed the delineation of zones of lower and higher cereal yields including areas of the SICS application. Higher cereal yield and lower spatial variability in the areas of SICS compared to control soil were observed in the years with normal rainfall. Analysis of the Bland-Altman including limits of agreement enabled to quantify the effect of particular SICS on cereal yield vs. control reference. Different effect of particular SICS on the cereal yield was observed in the years with scarce and good rainfall amount and distribution during growing season. The greatest variation of the cereal yield was observed in manure amended soil (S4) and it was lower and similar in the areas of remaining SICS (S2-S5). The results will help to to select most effective SICS for localized improving crop productivity and adaptation to global warming.&lt;/p&gt;&lt;p&gt;Acknowledgements.The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: SoilCare for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document