Spatial distribution of cereal yields related to the application of soil-improving cropping systems (SICS)

Author(s):  
Jerzy Lipiec ◽  
Boguslaw Usowicz

<p>Research indicates that spatial differentiation of crop yields and soil properties are largely influenced by agricultural practices and the nature of the soil itself. The aim of this study was to examine the spatial relationship between cereal (wheat and oats ) yields and soil properties related to the application of soil-improving cropping systems (SICS). Four-year experiment (2017-2020) was carried out on low productive sandy soil with application of following SICS: S1 – control; S2 – liming; S3 – green manure/cover crops including lupine, phacelia, serradella; S4 – manure and S5 – manure, liming and cover crops together. Effect of the SICS was evaluated using classical statistics, Bland-Altman analysis and geostatistical methods. Mathematical functions, fitted to the experimental cross- and semivariograms were used for mapping the yields (grain and straw) by ordinary cokriging. The grain yields in years with normal rainfall increased by 2% for S2, 10% for S3, 46% for S4, 47% for S5 compared to control (S1) 2789 kg/ha and in dry years were lower (respectively for S2-S5 by 16.3, 10.6, 2.8, 9.9% compared to control 1567 kg/ha. The range of spatial dependence for the yields in direct semi-variograms varied was 50–100 m and > 100 m in cross-semivariograms using textural fractions as secondary variables. The spatial relationships were stronger between yield and soil texture and properties were much stronger with texture and cation exchange capacity than with pH and organic carbon content. Using cokriging for interpolation (mapping) allowed the delineation of zones of lower and higher cereal yields including areas of the SICS application. Higher cereal yield and lower spatial variability in the areas of SICS compared to control soil were observed in the years with normal rainfall. Analysis of the Bland-Altman including limits of agreement enabled to quantify the effect of particular SICS on cereal yield vs. control reference. Different effect of particular SICS on the cereal yield was observed in the years with scarce and good rainfall amount and distribution during growing season. The greatest variation of the cereal yield was observed in manure amended soil (S4) and it was lower and similar in the areas of remaining SICS (S2-S5). The results will help to to select most effective SICS for localized improving crop productivity and adaptation to global warming.</p><p>Acknowledgements.The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: SoilCare for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).</p>

2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2019 ◽  
Vol 17 (1-2) ◽  
pp. 14-30
Author(s):  
M Jahangir Alam ◽  
S Ahmed ◽  
MK Islam ◽  
R Islam ◽  
M Islam

Cropping systems of Bangladesh are highly diverse and cultivation costs of puddled transplanted rice (PTR) are high. Therefore, an improved system is needed to address the issues, a field experiment was conducted during 2011-2013 to evaluate system intensification with varying degrees of cropping systems and residue retention. Four cropping systems (CSE) namely CSE1: T. boro rice-T. aman rice (control), CSE2: wheat-mungbean-T. aman rice (wheat and mungbean sown using a power tiller-operated seeder (PTOS) with full tillage in a single pass; puddled transplanted aman), CSE3: wheat-mungbean-dry seeded DS aman rice (DSR), and CSE4: wheat-mungbean-DS aman rice (all sown by PTOS with strip tillage) were compared. Two levels of aman rice residue retention (removed; partial retention i.e. 40 cm of standing stubble) were compared in sub plots. Grain yield was significantly higher (by 11%) when wheat was grown after DSR than PTR. Similarly, PTR and DSR (aman rice) produced statistically similar crop yields. Rice residue retention resulted a significantly higher (by 10%) wheat yield and a slightly increased (by 6%) mungbean yield than that of residues removed. The system productivity of CSE4 was significantly higher (by 10%) than CSE1 when averaged of the two years data. Partial aman residue retention gave significantly higher system yield than residue removal (by 0.6 t ha-1). After two years, no effect of CSE or partial aman residue retention was found on soil physical property (bulk density) of the top soil. Therefore, CSE4 along with residue retention would be more effective for sustainable crop production. The Agriculturists 2019; 17(1-2) 14-30


Agriculture ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 80 ◽  
Author(s):  
K. Bybee-Finley ◽  
Matthew Ryan

Sustainable intensification calls for agroecological and adaptive management of the agrifood system. Here, we focus on intercropping and how this agroecological practice can be used to increase the sustainability of crop production. Strip, mixed, and relay intercropping can be used to increase crop yields through resource partitioning and facilitation. In addition to achieving greater productivity, diversifying cropping systems through the use of strategic intercrops can increase yield stability, reduce pests, and improve soil health. Several intercropping systems are already implemented in industrialized agricultural landscapes, including mixed intercropping with perennial grasses and legumes as forage and relay intercropping with winter wheat and red clover. Because intercropping can provide numerous benefits, researchers should be clear about their objectives and use appropriate methods so as to not draw spurious conclusions when studying intercrops. In order to advance the practice, experiments that test the effects of intercropping should use standardized methodology, and researchers should report a set of common criteria to facilitate cross-study comparisons. Intercropping with two or more crops appears to be less common with annuals than perennials, which is likely due to differences in the mechanisms responsible for complementarity. One area where intercropping with annuals in industrialized agricultural landscapes has advanced is with cover crops, where private, public, and governmental organizations have harmonized efforts to increase the adoption of cover crop mixtures.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 295 ◽  
Author(s):  
Julián Cuevas ◽  
Ioannis N. Daliakopoulos ◽  
Fernando del Moral ◽  
Juan J. Hueso ◽  
Ioannis K. Tsanis

A major challenge of the Sustainable Development Goals linked to Agriculture, Food Security, and Nutrition, under the current global crop production paradigm, is that increasing crop yields often have negative environmental impacts. It is therefore urgent to develop and adopt optimal soil-improving cropping systems (SICS) that can allow us to decouple these system parameters. Soil salinization is a major environmental hazard that limits agricultural potential and is closely linked to agricultural mismanagement and water resources overexploitation, especially in arid climates. Here we review literature seeking to ameliorate the negative effect of soil salinization on crop productivity and conduct a global meta-analysis of 128 paired soil quality and yield observations from 30 studies. In this regard, we compared the effectivity of different SICS that aim to cope with soil salinization across 11 countries, in order to reveal those that are the most promising. The analysis shows that besides case-specific optimization of irrigation and drainage management, combinations of soil amendments, conditioners, and residue management can contribute to significant reductions of soil salinity while significantly increasing crop yields. These results highlight that conservation agriculture can also achieve the higher yields required for upscaling and sustaining crop production.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


2015 ◽  
Vol 7 (12) ◽  
pp. 72 ◽  
Author(s):  
Kabal S. Gill ◽  
Sukhdev S. Malhi ◽  
Newton Z. Lupwayi

<p>Wood ash may be used to mitigate soil acidity and improve crop production. We compared effects of wood ash and recommended fertilizers on soil properties of a Gray Luivsol, crop yields and contribution margins in southeast Peace, Alberta, Canada. The CHK (no fertilizer, inoculation or wood ash), FRT (recommended fertilizers or inoculation), ASH (wood ash rate to supply amounts of phosphorus equivalent to the FRT treatment); and ASH+N (same as ASH + N fertilizer or inoculation) treatments were applied in 2006 and 2007. Their effects were studied from 2006 to 2014. Wood ash had all the essential plant nutrients, except nitrogen. Soil samples collected in 2007, 2008 and 2013 had or tended to have higher pH, P, K, Ca, Ca:Mg ratio, S, Cu, Zn and B levels for the ASH and ASH+N treatments than the CHK and FRT treatments. In the 2006 and 2007, the seed yields were ASH+N &gt; FRT &gt; ASH &gt; CHK. The seed yields in 2008, 2010, 2012, 2013 and 2014 were greater from both the wood ash treatments than other treatments. Extra contribution margin from the ASH+N over the FRT treatment was $751/ha, i.e. $97 Mg<sup>-1</sup> of applied wood ash. Overall, wood ash reduced fertilizer expenditure and improved seed yield, contribution margin and soil properties, with residual effects observed up to seven years and likely for few more years.</p>


2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Anny Mulyani ◽  
Mamat Haris Suwanda

<p><strong>Abstrak</strong>. Wilayah Nusa Tenggara mempunyai lahan kering beriklim kering seluas 4,9 juta ha dengan curah hujan &lt;2.000 mm/tahun dan bulan kering 5-10 bulan, bersolum tanah dangkal dan berbatu. Sebagian lahan tersebut sudah dimanfaatkan menjadi lahan pertanian terutama jagung, akibatnya produktivitas tanaman jagung rendah dibandingkan potensi genetiknya, yaitu sekitar 2,5 ton/ha di NTT dan 5,3 ton/ha di NTB dibanding dengan potensi genetiknya 9 ton/ha. Sejak tahun 2010-2015, Badan Penelitian dan Pengembangan Pertanian telah mengembangkan inovasi teknologi pengelolaan lahan kering beriklim kering dan berbatu di beberapa kabupaten di NTT dan NTB, meliputi penyediaan sumberdaya air (dam parit, embung, tampung renteng mini, sumur dangkal), pengenalan varietas unggul baru dan budidaya tanaman pangan. Pembelajaran yang diperoleh menunjukkan bahwa penyediaan air menjadi titik ungkit untuk meningkatkan indeks pertanaman dan produktivitas tanaman. Inovasi teknologi yang dibutuhkan petani adalah, mudah diterapkan, biaya murah, dan efisien tenaga kerja mendorong berlanjutnya teknologi tersebut meskipun progam tersebut telah selesai. Pada tahun 2014-2018 telah dilaksanakan kegiatan pertanian konservasi melalui dana hibah barang dan jasa yang dikelola FAO. Prinsip dasar pertanian konservasi terdiri atas 3 pilar, yaitu olah tanah terbatas berupa lubang olah permanen, penutupan permukaan tanah, rotasi/tumpangsari. Lubang tanam tersebut diberi pupuk kandang atau kompos, dan ditanami jagung pada 4 penjuru lubang, dan ditumpangsarikan dengan berbagai kacang-kacangan atau tanaman merambat seperti labu kuning yang berfungsi sebagai penutup tanah dan penghasilan tambahan dari kacang-kacangan berumur pendek. Berdasarkan hasil analisis tanah sebelum dan sesudah implementasi pertanian konservasi menunjukkan bahwa pertanian konservasi dapat meningkatkan kesuburan tanah, retensi air dan meningkatkan produksi tanaman jagung.</p><p> </p><p><strong>Abstract</strong>. The Nusa Tenggara region has upland area with dry climate of 4.9 million ha, less than 2,000 mm annual rainfall, 5-10 dry months, shallow and rocky soils. Some of the land has been used for agricultural development, especially corn, resulting in low corn productivity of around 2.5 tons / ha in NTT and 5.3 tons / ha in NTB as compared to it genetic potential 9 tons /ha. Since 2010-2015, Indonesian Agency of Agricultural Research and Development has developed innovation of soil management technology for upland with dry climates and and rocky soils in several districts in NTT and NTB. The innovation includes the provision of water resources (dam trenches, reservoirs, mini catchments, and shallow wells), introduction of new high yielding varieties and cultivation crops. The lessons learned show that water supply is the initial point to increase cropping index and crop productivity. Technological innovations needed by farmers are easy to implement, low cost, and labor efficient thereby encourage the continuation of the technology even though the program has been completed. In 2014-2018, conservation agriculture activities were carried out through grants of goods and services managed by Food Agriculture Organization (FAO). The basic principle of conservation agriculture consists of 3 pillars, namely limited tillage in the form of permanent planting holes, cover crops, rotation / intercropping. The planting hole is given manure or compost, and planted with corn in 4 corners, and intercropped with various nuts or vines such as pumpkin that serves as a soil cover and additional income from short-lived beans. Based on the results of soil analysis before and after the implementation of conservation agriculture, it shows that conservation agriculture can increase soil fertility, water retention and increase corn crop production.</p>


2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2021 ◽  
Author(s):  
Sara Minoli ◽  
Jonas Jägermeyr ◽  
Senthold Asseng ◽  
Christoph Müller

&lt;p&gt;Broad evidence is pointing at possible adverse impacts of climate change on crop yields. Due to scarce information about farming management practices, most global-scale studies, however, do not consider adaptation strategies.&lt;/p&gt;&lt;p&gt;Here we integrate models of farmers' decision making with crop biophysical modeling at the global scale to investigate how accounting for adaptation of crop phenology affects projections of future crop productivity under climate change. Farmers in each simulation unit are assumed to adapt crop growing periods by continuously selecting sowing dates and cultivars that match climatic conditions best. We compare counterfactual management scenarios, assuming crop calendars and cultivars to be either the same as in the reference climate &amp;#8211; as often assumed in previous climate impact assessments &amp;#8211; or adapted to future climate.&lt;/p&gt;&lt;p&gt;Based on crop model simulations, we find that the implementation of adapted growing periods can substantially increase (+15%) total crop production in 2080-2099 (RCP6.0). In general, summer crops are responsive to both sowing and harvest date adjustments, which result in overall longer growing periods and improved yields, compared to production systems without adaptation of growing periods. Winter wheat presents challenges in adapting to a warming climate and requires region-specific adjustments to pre and post winter conditions. We present a systematic evaluation of how local and climate-scenario specific adaptation strategies can enhance global crop productivity on current cropland. Our findings highlight the importance of further research on the readiness of required crop varieties.&lt;/p&gt;


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


Sign in / Sign up

Export Citation Format

Share Document