scholarly journals Trophy Heads or Ancestor Veneration? A Stable Isotope Perspective on Disassociated and Modified Crania in Precontact Central California

2016 ◽  
Vol 81 (1) ◽  
pp. 114-131 ◽  
Author(s):  
Jelmer W. Eerkens ◽  
Eric J. Bartelink ◽  
Laura Brink ◽  
Richard T. Fitzgerald ◽  
Ramona Garibay ◽  
...  

AbstractFew items in the archaeological record capture the imagination more than human heads separated from their bodies. Such items are sometimes assumed to indicate warfare practices, where “trophy heads” display power and fighting prowess. Other times, they are interpreted as representing ancestor veneration. Isolated crania are not uncommon in the Early period (ca. 4500–2500 B.P.) in Central California. Some anthropologists interpret them as trophy heads, but isotopie analyses at CA-CCO-548 suggest an alternative interpretation. Strontium isotope analyses on one modified cranium produced values consistent with local individuals, and both headless burials and people buried with extra skulls overlap in carbon and nitrogen isotopes. Further, teeth from two individuals who were buried with extra skulls suggest both were weaned at early ages (before age 2), much earlier than other individuals at the site. Together with contextual information, we argue that the isotopie data are more consistent with the hypothesis that extra skulls and headless burials represent ancestor veneration rather than trophies, shedding new light on Early-period societies in Central California.

2019 ◽  
Vol 5 (2) ◽  
pp. 90-106 ◽  
Author(s):  
Gretchen L. Lescord ◽  
Meredith G. Clayden ◽  
Karen A. Kidd ◽  
Jane L. Kirk ◽  
Xiaowa Wang ◽  
...  

Methylmercury (MeHg) biomagnifies through aquatic food webs resulting in elevated concentrations in fish globally. Stable carbon and nitrogen isotopes are frequently used to determine dietary sources of MeHg and to model its biomagnification. However, given the strong links between MeHg and sulfur cycling, we investigated whether sulfur isotopes (δ34S) would improve our understanding of MeHg concentrations ([MeHg]) in Arctic lacustrine food webs. Delta34S values and total mercury (THg) or MeHg were measured in water, sediments, and biota from six lakes near Resolute Bay, NU, Canada. In two lakes impacted by historical eutrophication, aqueous sulfate δ34S was ∼8‰ more positive than sedimentary δ34S, suggestive of bacterial sulfate reduction in the sediment. In addition, aqueous δ34S showed a significant positive relationship with aqueous [MeHg] across lakes. Within taxa across lakes, [THg] in Arctic char muscle and [MeHg] in their main prey, chironomids, were positively related to their δ34S values across lakes, but inconsistent relationships were found across entire food webs among lakes. Across lakes, nitrogen isotopes were better predictors of biotic [THg] and [MeHg] than δ34S within this dataset. Our results suggest some linkages between Hg and S biogeochemistry in high Arctic lakes, which is an important consideration given anticipated climate-mediated changes in nutrient cycling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hans Jacquemyn ◽  
Rein Brys ◽  
Michael Waud ◽  
Alexandra Evans ◽  
Tomáš Figura ◽  
...  

Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.


2016 ◽  
Vol 7 ◽  
pp. 18-27 ◽  
Author(s):  
Cheng-Yi Lee ◽  
Maa-Ling Chen ◽  
Peter Ditchfield ◽  
Li-Hung Lin ◽  
Pei-Ling Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document