scholarly journals Origin of sediment column profiles of gases and organic matter at a Laptev Sea gas seeps area (Arctic)

2021 ◽  
Author(s):  
Vyacheslav Sevastyanov ◽  
Valeria Fedulova ◽  
Veniamin Fedulov ◽  
Olga Kuznetsova ◽  
Nikita Dushenko ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


2011 ◽  
Vol 8 (7) ◽  
pp. 1865-1879 ◽  
Author(s):  
E. S. Karlsson ◽  
A. Charkin ◽  
O. Dudarev ◽  
I. Semiletov ◽  
J. E. Vonk ◽  
...  

Abstract. The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea), an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers) and isotopic tools (stable carbon and radiocarbon isotopes) have been applied to both particulate organic carbon (POC) in surface water and sedimentary organic carbon (SOC) collected from the underlying surface sediments. Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations). Depleted δ13C-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources. Despite a shallow water column (10–40 m), the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for δ13C and from +300 to +450 for Δ14C from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5–6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea. Numerical modeling (Monte Carlo simulations) with δ13C and Δ14C in both POC and SOC was applied to deduce the relative contribution of – plankton OC, surface soil layer OC and yedoma/mineral soil OC. This three end-member dual-carbon-isotopic mixing model suggests quite different scenarios for the POC vs SOC. Surface soil is dominating (63 ± 10 %) the suspended organic matter in the surface water of SE Laptev Sea. In contrast, the yedoma/mineral soil OC is accounting for 60 ± 9 % of the SOC. We hypothesize that yedoma-OC, associated with mineral-rich matter from coastal erosion is ballasted and thus quickly settles to the bottom. The mineral association may also explain the greater resistance to degradation of this terr-OC component. In contrast, more amorphous humic-like and low-density terr-OC from surface soil and recent vegetation represents a younger but more bioavailable and thus degraded terr-OC component held buoyant in surface water. Hence, these two terr-OC components may represent different propensities to contribute to a positive feedback to climate warming by converting OC from coastal and inland permafrost into CO2.


2020 ◽  
Author(s):  
Van Liem Nguyen ◽  
Birgit Wild ◽  
Örjan Gustafsson ◽  
Igor Semiletov ◽  
Oleg Dudarev ◽  
...  

<p>Widespread accelerated permafrost thawing is predicted for this century and beyond. This threatens to remobilize the large amounts of Mercury (Hg) currently ‘locked’ in Arctic permafrost soils to the Arctic Ocean and thus potentially lead to severe consequences for human and wildlife health. Future risks of Arctic Hg in a warmer climate are, however, poorly understood. One crucial knowledge gap to fill is the fate of Hg once it enters the marine environment on the continental shelves. Arctic rivers are already today suggested to be the main source of Hg into the Arctic Ocean, with dissolved and particulate organic matter (DOM and POM, respectively) identified as important vectors for the land to sea transport.</p><p>In this study, we have investigated total Hg (HgT) and monomethylmercury (MeHg) concentrations in surface sediments from the East Siberian Arctic Shelf (ESAS) along a transect from the Lena river delta to the Laptev Sea continental slope. The ESAS is the world’s largest continental shelf and receives large amounts of organic carbon by the great Arctic Russian rivers (e.g., Lena, Indigirka and Kolyma), remobilized from continuous and discontinuous permafrost regions in the river catchments, and from coastal erosion. Data on HgT and MeHg levels in ESAS sediments is however limited. Here, we observed concentrations of Hg ranging from 30 to 96 ng Hg g<sup>-1</sup> d.w. of HgT, and 0.03 to 9.5 ng Hg g<sup>-1</sup> d.w. of MeHg. Similar concentrations of HgT were observed close to the river delta (54 ± 19 ng Hg g<sup>-1</sup> d.w.), where >95 % of the organic matter is of terrestrial origin, and the other section of the transect (42 ± 7 ng Hg g<sup>-1</sup> d.w.) where the terrestrial organic matter is diluted with carbon from marine sources. In contrast, we observed higher concentrations of MeHg close to the river delta (0.72 ± 0.71 ng Hg g<sup>-1</sup> d.w. as MeHg) than further out on the continental shelf (0.031 ± 0.71 ng Hg g<sup>-1</sup> d.w. as MeHg). We also observed a positive correlation between the MeHg:Hg ratio and previously characterized molecular markers of terrestrial organic matter (Bröder et al. Biogeosciences (2016) & Nature Com. (2018)). We thus suggest riverine inputs, rather than in situ MeHg formation, to explain observed MeHg trends.</p>


2017 ◽  
Vol 14 (5) ◽  
pp. 1261-1283 ◽  
Author(s):  
Lutz Schirrmeister ◽  
Georg Schwamborn ◽  
Pier Paul Overduin ◽  
Jens Strauss ◽  
Margret C. Fuchs ◽  
...  

Abstract. The composition of perennially frozen deposits holds information on the palaeo-environment during and following deposition. In this study, we investigate late Pleistocene permafrost at the western coast of the Buor Khaya Peninsula in the south-central Laptev Sea (Siberia), namely the prominent eastern Siberian Yedoma Ice Complex (IC). Two Yedoma IC exposures and one drill core were studied for cryolithological (i.e. ice and sediment features), geochemical, and geochronological parameters. Borehole temperatures were measured for 3 years to capture the current thermal state of permafrost. The studied sequences were composed of ice-oversaturated silts and fine-grained sands with considerable amounts of organic matter (0.2 to 24 wt %). Syngenetic ice wedges intersect the frozen deposits. The deposition of the Yedoma IC, as revealed by radiocarbon dates of sedimentary organic matter, took place between 54.1 and 30.1 kyr BP. Continued Yedoma IC deposition until about 14.7 kyr BP is shown by dates from organic matter preserved in ice-wedge ice. For the lowermost and oldest Yedoma IC part, infrared-stimulated luminescence dates on feldspar show deposition ages between 51.1 ± 4.9 and 44.2 ± 3.6 kyr BP. End-member modelling was applied to grain-size-distribution data to determined sedimentation processes during Yedoma IC formation. Three to five robust end-members were detected within Yedoma IC deposits, which we interpret as different modes of primary and reworked unconfined alluvial slope and fan deposition as well as of localized eolian and fluvial sediment, which is overprinted by in situ frost weathering. The cryolithological inventory of the Yedoma IC preserved on the Buor Khaya Peninsula is closely related to the results of other IC studies, for example, to the west on the Bykovsky Peninsula, where formation time (mainly during the late Pleistocene marine isotope stages (MIS) 3 interstadial) and formation conditions were similar. Local freezing conditions on Buor Khaya, however, differed and created solute-enriched (salty) and isotopically light pore water pointing to a small talik layer and thaw-bulb freezing after deposition. Due to intense coastal erosion, the biogeochemical signature of the studied Yedoma IC represents the terrestrial end-member, and is closely related to organic matter currently being deposited in the marine realm of the Laptev Sea shelf.


2015 ◽  
Vol 12 (24) ◽  
pp. 7483-7502 ◽  
Author(s):  
S. D. Wankel ◽  
C. Buchwald ◽  
W. Ziebis ◽  
C. B. Wenk ◽  
M. F. Lehmann

Abstract. Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3−) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program – IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion–reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded zones of co-occurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (δ15NNTR (NTR, referring to nitrification) and δ18ONTR), as well as the isotope effect for denitrification (15ϵDNF) (DNF, referring to denitrification), parameters with high relevance to global ocean models of N cycling. Estimated values of δ15NNTR were generally lower than previously reported δ15N values for sinking particulate organic nitrogen in this region. We suggest that these values may be, in part, related to sedimentary N2 fixation and remineralization of the newly fixed organic N. Values of δ18ONTR generally ranged between −2.8 and 0.0 ‰, consistent with recent estimates based on lab cultures of nitrifying bacteria. Notably, some δ18ONTR values were elevated, suggesting incorporation of 18O-enriched dissolved oxygen during nitrification, and possibly indicating a tight coupling of NH4+ and NO2− oxidation in this metabolically sluggish environment. Our findings indicate that the production of organic matter by in situ autotrophy (e.g., nitrification, nitrogen fixation) supplies a large fraction of the biomass and organic substrate for heterotrophy in these sediments, supplementing the small organic-matter pool derived from the overlying euphotic zone. This work sheds new light on an active nitrogen cycle operating, despite exceedingly low carbon inputs, in the deep sedimentary biosphere.


2018 ◽  
Vol 15 (2) ◽  
pp. 471-490 ◽  
Author(s):  
Volker Brüchert ◽  
Lisa Bröder ◽  
Joanna E. Sawicka ◽  
Tommaso Tesi ◽  
Samantha P. Joye ◽  
...  

Abstract. The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr−1 is degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg yr−1.


2021 ◽  
Author(s):  
Charlotte Haugk ◽  
Loeka Laura Jongejans ◽  
Kai Mangelsdorf ◽  
Matthias Fuchs ◽  
Olga Ogneva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document