scholarly journals Orogenic Au deposits of the Pohjanmaa Belt, south-western Finland: deposit model and potential Co-source

2021 ◽  
Author(s):  
Simon Hector ◽  
Jochen Kolb ◽  
Clifford Patten
Keyword(s):  
2014 ◽  
Vol 88 (s2) ◽  
pp. 475-477 ◽  
Author(s):  
Yuling XIE ◽  
Yingxu LI ◽  
Zengqian HOU ◽  
David R COOKE ◽  
Leonid DANYUSHEVSKY ◽  
...  

2021 ◽  
Author(s):  
Fangge Chen ◽  
Peir K. Pufahl ◽  
Qingfei Wang ◽  
Edward J. Matheson ◽  
Brandi M. Shabaga ◽  
...  

Abstract The lower Carboniferous Luzhai and Baping Formations (ca. 359 Ma) of the South China block, Guangxi Province, comprise an ca. 170-m-thick clastic-carbonate succession capped by Mn ore horizons near the town of Longtou. Excellent exposure of the stratigraphic succession provides an unparalleled opportunity to investigate the origin of carbonate-hosted Mn deposits, which are generally understudied. Lithofacies associations suggest inner and middle shelf clastic rocks accumulated with deposition of carbonates on a mesotrophic middle to outer shelf. In the Longtou region, carbonate deposition during marine transgression culminated with the precipitation of high-grade Mn deposits during maximum flooding. Mn ore horizons are composed of amalgamated alabandite-bearing rhodochrosite, Mn calcite, and braunite laminae. Mn carbonates have been largely interpreted as forming in oxic water columns via reduction of Mn oxides by organic matter. However, paragenetic relationships and δ13C values (similar to those of seawater) indicate the Mn carbonates of Longtou were formed during authigenesis by the emplacement of anoxic, Mn-rich water masses on the distal to middle shelf. Such anoxia is interpreted to have shut down the carbonate factory and diminished sedimentation, a prerequisite for the concentration and precipitation of Mn carbonates in pore water. This research supports the notion that areas of the Paleozoic deep ocean were persistently anoxic and periodically tapped by coastal upwelling to produce Mn- and Fe-rich deposits. Application of this emerging ore deposit model to other economically important carbonate-hosted Mn deposits may improve resource exploration.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shengzhe Li ◽  
Dongmei Yang ◽  
Tengfei Zhang ◽  
Xiaojing Liu

CIPS is a shift in the axial power towards the bottom half of the core, also known as axial offset anomaly (AOA), which results from the deposited of corrosion products during an operation. The main reason of CIPS is the solute particles especially boron compounds concentrated inside the porous deposit. The impact of CIPS is that the axial power distribution control may be more difficult and the shutdown margin can be decreased simultaneously. Besides, it also requires estimated critical condition (ECC) calculations to account for the effects of AOA. In this article, thermal-hydraulic subchannel code and boron deposit model have been combined to analyze the CIPS risk. The neutronics codes deal with the generation of homogenized neutron cross section as well as the calculation of local power factor. A simple rod assembly is analyzed with this combined method and simulation results are presented. Simulation results provide the boron hideout amount inside crud deposits and power shapes. The obtained results clearly show the power shape suppression in regions where crud deposits exist, which is a clear indication of CIPS phenomenon. And the CIPS effects on CHF have also been investigated. Result shows a margin of DNBR decrease in the crud case.


2012 ◽  
Vol 455-456 ◽  
pp. 1345-1349
Author(s):  
Yong Sheng Cheng

The Dachang tin-polymetallic ore deposit is one of the largest Sn ore deposit in the world. For a long time, the Danchi mineralization belt was studied from different perspective, i.e., the mineralization age, the ore source, the deposit model, etc. In fact, the contradistinction of the three mineralization belts has an important macroscopic significance for deepen the genetic mechanism of the Danchi mineralization belt. In the Changpo ore deposit of the west mineralization belt, besides three δ34S values (+4.794, +2.31, +2.6), the δ34S values belong to negative value, yet in the Lamo ore deposit of the middle mineralization belt, most of the δ34S values show positive besides two sulfur isotope sample (δ34S=-0.36, -1.6). But in the Dafulou ore deposit of the east mineralization belt, the δ34S values range from negative value to positive value. So there are only same ore resource partly for the Lamo ore deposit and the Changpo ore deposit. Overall, the ore source of the Dafulou ore deposit is more extensive than other ore deposit, and shares the same ore source with the other ore deposit.


2018 ◽  
Vol 159 ◽  
pp. 01043
Author(s):  
Windu Partono

Development of surface acceleration time histories is important for dynamic analysis of structure design and evaluation. Acceleration time histories usually developed from seismograph records due to specific earthquake event. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem fault and Semarang fault are two closest and dangerous shallow crustal fault earthquake sources which must be taken into account for seismic mitigation of Semarang. This paper presents the development two components surface acceleration time histories for Semarang caused by Semarang fault earthquake scenarios, with magnitude from 6 Mw to 7 Mw and maximum epicentre distance 15 Km. This research was performed by conducting deterministic hazard analysis, response spectral matching and site response analysis to obtain a pair of modified acceleration time histories. Site response analysis was performed by conducting 30 meters soil deposit model by taking the assumption that the position of bedrock elevation is 30 meters below the surface layer. Modified acceleration time histories were developed from a pair time histories (North-South/NS and East-West/EW direction) collected from worldwide historical earthquakes. Modified time histories were developed due to limited time histories data caused by Semarang fault earthquake source.


2013 ◽  
Vol 807-809 ◽  
pp. 2125-2128
Author(s):  
Yu Jian Li ◽  
Hai Jun Yu ◽  
Jun Zhu

On the basis of systematic analysis of and research on KT5 orebody, via the special deposit-model software Surpac, with the theory of geostatistics, the mathematic-economical model of the deposit in the Yangla Copper deposit has been established. As a result,3D visibility,dynamic delineation of orebody and calculation of reserves, dynamic query of data have been realized, a successful example has been set for the computer management of mining production and the reconstruction of traditional technology.


Sign in / Sign up

Export Citation Format

Share Document