scholarly journals Application Of Finite Difference Eikonal Solver For Traveltime Computation In Forward Modeling And Migration

2021 ◽  
Vol 72 ◽  
pp. 113-122
Author(s):  
Amir Mustaqim Majdi ◽  
◽  
Seyed Yaser Moussavi Alashloo ◽  
Nik Nur Anis Amalina Nik Mohd Hassan ◽  
Abdul Rahim Md Arshad ◽  
...  

Traveltime is one of the propagating wave’s components. As the wave propagates further, the traveltime increases. It can be computed by solving wave equation of the ray path or the eikonal wave equation. Accurate method of computing traveltimes will give a significant impact on enhancing the output of seismic forward modeling and migration. In seismic forward modeling, computation of the wave’s traveltime locally by ray tracing method leads to low resolution of the resulting seismic image, especially when the subsurface is having a complex geology. However, computing the wave’s traveltime with a gridding scheme by finite difference methods able to overcomes the problem. This paper aims to discuss the ability of ray tracing and fast marching method of finite difference in obtaining a seismic image that have more similarity with its subsurface model. We illustrated the results of the traveltime computation by both methods in form of ray path projection and wavefront. We employed these methods in forward modeling and compared both resulting seismic images. Seismic migration is executed as a part of quality control (QC). We used a synthetic velocity model which based on a part of Malay Basin geology structure. Our findings shows that the seismic images produced by the application of fast marching finite difference method has better resolution than ray tracing method especially on deeper part of subsurface model.

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1277-1298
Author(s):  
Xiaoyu Zhang ◽  
Dong Zhang ◽  
Qiong Chen ◽  
Yan Yang

Abstract. The forward modeling of a scalar wave equation plays an important role in the numerical geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based on the conventional grid. In order to ensure the accuracy of the calculation, absorption layers should be introduced around the computational area to suppress the wave reflection caused by the artificial boundary. For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. However, the traditional perfectly matched layer algorithm is calculated using a staggered grid based on the first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on the second-order equation can be derived, the formula is rather complex and intermediate variables need to be introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to match the variables at the boundaries between the computational area and the absorbing boundary area. This new boundary-matched method can integrate the traditional staggered-grid perfectly matched layer algorithm and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our method, we used several models to carry out numerical simulation experiments. The comparison between the simulation results of our new boundary-matched algorithm and other boundary absorption algorithms shows that our proposed method suppresses the reflection of the artificial boundaries better and has a higher computational efficiency.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. S221-S230 ◽  
Author(s):  
Denis Kiyashchenko ◽  
René-Edouard Plessix ◽  
Boris Kashtan

Impedance contrast images can result from a least-squares migration or from a modified imaging principle. Theoretically, the two approaches should give similar results, but in practice they lead to different estimates of the impedance contrasts because of limited acquisition geometry, difficulty in computing exact weights for least-squares migration, and small contrast approximation. To analyze those differences, we compare the two approaches based on 2D synthetics. Forward modeling is either a finite-difference solver of the full acoustic wave equation or a one-way wave-equation solver that correctly models the amplitudes. The modified imaging principle provides better amplitude estimates of the impedance contrasts and does not suffer from the artifacts at-tributable to diving waves, which can be seen in two-way, least-squares migrated sections. However, because of the shot-based formulation, artifacts appear in the modified imaging principle results in shadow zones where energy is defocused. Those artifacts do not exist with the least-squares migration algorithm because all shots are processed simultane-ously.


Geophysics ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 23-48 ◽  
Author(s):  
R. H. Stolt

Wave equation migration is known to be simpler in principle when the horizontal coordinate or coordinates are replaced by their Fourier conjugates. Two practical migration schemes utilizing this concept are developed in this paper. One scheme extends the Claerbout finite difference method, greatly reducing dispersion problems usually associated with this method at higher dips and frequencies. The second scheme effects a Fourier transform in both space and time; by using the full scalar wave equation in the conjugate space, the method eliminates (up to the aliasing frequency) dispersion altogether. The second method in particular appears adaptable to three‐dimensional migration and migration before stack.


2014 ◽  
Vol 32 (3) ◽  
pp. 497
Author(s):  
Gary Corey Aldunate ◽  
Reynam C. Pestana

ABSTRACT. The 3-D acoustic wave equation is generally solved using finite difference schemes on the mesh which defines the velocity model. However, whennumerical solution of the wave equation is done by finite difference schemes, attention should be taken with respect to dispersion and numerical stability. To overcomethese problems, one alternative is to solve the wave equation in the Fourier domain. This approach is stabler and makes possible to separate the full wave equation inits unidirectional equations. Thus, the full wave equation is decoupled in two first order differential equations, namely two equations related to the vertical component:upgoing (-Z) and downgoing (+Z) unidirectional equations. Among the solution methods, we can highlight the Split-Step-Plus-Interpolation (SS-PSPI). This methodhas been proven to be quite adequate for migration problems in 3-D media, providing satisfactory results at low computational cost. In this work, 3-D seismic modelingis implemented using Huygens’ principle and an equivalent simulation of the full wave equation solution is obtained by properly applying the solutions of the twouncoupled equations. In this procedure, a point source wavefield located at the surface is extrapolated downward recursively until the last depth level in the velocityfield is reached. A second extrapolation is done in order to extrapolate the wavefield upwards, from the last depth level to the surface level, and at each depth level thepreviously stored wavefield (saved during the downgoing step) is convolved with a reflectivity model in order to simulate secondary sources. To perform depth pre-stackmigration of 3-D datasets, the decoupled wave equations were used and the same process described for seismic modeling is applied for the propagation of sources andreceivers wavefields. Thus, depth migrated images are obtained using appropriate image conditions: the upgoing and downgoing wavefields of sources and receiversare correlated and the migrated images are formed. The seismic modeling and migration methods using upgoing and downgoing wavefields were tested on simple 3-Dmodels. Tests showed that the addition of upgoing wavefield in seismic migration, provide better result and highlight steep deep reflectors which do not appear in theresults using only downgoing wavefields.Keywords: 3-D seismic modeling and migration, Upoing and downgoing wavefields, Split-Step Phase Shift Plus Interpolation method, Decoupled wave equations,One-Way equations.RESUMO. A equação da onda acústica tridimensional é normalmente resolvida usando-se esquemas de diferenças finitas sobre a malha que define o modelo develocidade. Entretanto, deve-se ter cuidado com a dispersão e a estabilidade numérica durante o processo de propagação da onda na malha. Uma outra alternativa, bastante eficiente de se resolver a equação completa da onda, é desacoplando-a em duas equações de onda unidirecionais no domínio transformado de Fourier (solução pseudo-espectral). Assim, a equação completa da onda é separada em duas equações diferenciais de primeira ordem relativa á componente vertical: equação da ondaascendente (-Z) e da onda descendente (+Z). Normalmente, a equação unidirecional é resolvida com diferentes ordens de aproximação. Entre esses métodos, podemos destacar o método “Split-Step-Plus-Interpolation” (SS-PSPI), que tem sido bastante adequado para problemas de migração em meios 3-D, fornecendo resultados aum baixo custo computacional. Neste trabalho, o modelamento sísmico 3-D foi implementado usando-se o princípio de Huygens com as duas equações de onda unidirecionais desacopladas. Com o objetivo de simular uma solução equivalente à solução da equação completa, uma fonte pontual localizada na superfície é extrapoladaem profundidade, de forma recursiva, até atingir o último nível de profundidade na malha do modelo de velocidades. Uma segunda extrapolação é realizada para extrapolar para cima o campo de onda, desde o último nível em profundidade até à superfície do modelo. Assim, os receptores localizados na superfície registram ocampo de onda ascendente, que trazem informações dos refletores em subsuperfície na forma de reflexões e difrações. Para realizar a migração pré-empilhamento em profundidade de dados 3-D, usando-se as equações de onda desacopladas, o mesmo procedimento descrito para o modelamento sísmico é utilizado para a propagação dos campos de onda de fontes e receptores. Imagens migradas são obtidas usando-se condições de imagem apropriadas, onde os campos de onda da fonte e dos receptores, descendente e ascendente, são correlacionados. Sobre modelos 3-D simples foram testados os métodos de modelamento e migração, levando em conta oscampos de onda ascendente e descendente. Ficando, assim, evidenciado que no método de migração sísmica, proposto aqui, a adição do campo de onda ascendente fornece um melhor resultado, ressaltando os refletores íngremes que não aparecem nos resultados utilizando-se apenas a extrapolação do campo de onda descendente.Palavras-chave: Migração e modelagem sísmica 3-D, Migração em duas etapas mais interpolação, equações de ondas unidirecionais.


2021 ◽  
Author(s):  
Tung-Cheng Ho ◽  
Shingo Watada ◽  
Kenji Satake

<p>We propose a ray-tracing method to solve the two-point boundary value problem for tsunamis based on the long-wave theory. In the long-wave theory, the tsunami wave velocity is proportional to the square root of water depth, which is available from global bathymetric atlases. Our method computes the shortest travel times starting from each of the two given points and calculates the local ray direction to trace the ray path. We utilize an explicit, non-iterative tracing scheme that exhibits robust results and applies to any tsunami-accessible locations, and the global-shortest travel-time path is derived. In simple and real bathymetry cases, our method demonstrates stable results with neglectable low uncertainties. The ray-tracing method is then applied to analyze the path of tsunamis from different directions to four important bays in Japan. The result shows that tsunami ray paths are significantly influenced by local bathymetry, and some crucial structures, such as trench and trough, behave as the primary routes of this region. Deploying stations near these routes will be most beneficial for tsunami early warning. The existing tsunami-observing system off the Honshu area works well for tsunamis from the east side but slightly deficient for tsunamis from the west side. The far-field ray tracing shows that tsunamis traveling from Chile to Japan through two main routes—one via north Hawaii and the other via the south— depending on the location of the source.</p>


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. E1-E10 ◽  
Author(s):  
Yu Zhang ◽  
Guanquan Zhang ◽  
Norman Bleistein

One-way wave operators are powerful tools for forward modeling and migration. Here, we describe a recently developed true-amplitude implementation of modified one-way operators and present some numerical examples. By “true-amplitude” one-way forward modeling we mean that the solutions are dynamically correct as well as kinematically correct. That is, ray theory applied to these equations yields the upward- and downward-traveling eikonal equations of the full wave equation, and the amplitude satisfies the transport equation of the full wave equation. The solutions of these equations are used in the standard wave-equation migration imaging condition. The boundary data for the downgoing wave is also modified from the one used in the classic theory because the latter data is not consistent with a point source for the full wave equation. When the full wave-form solutions are replaced by their ray-theoretic approximations, the imaging formula reduces to the common-shot Kirchhoff inversion formula. In this sense, the migration is true amplitude as well. On the other hand, this new method retains all of the fidelity features of wave equation migration. Computer output using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data must be collected from a single common-shot experiment. Multiexperiment data, such as common-offset data, cannot be used with this method as presently formulated.


Sign in / Sign up

Export Citation Format

Share Document