Two-Dimensional Analysis of Tandem/Staggered Airfoils Using Computational Fluid Dynamics

2005 ◽  
Vol 33 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Z. Husain ◽  
M. Z. Abdullah ◽  
T. C. Yap

The two-dimensional analysis, using computational fluid dynamics (CFD), of tandem/staggered arranged airfoils of the canard and wing of an Eagle 150 aircraft and also the aerodynamic tests conducted in an open-circuit wind tunnel are presented in the paper. The wind tunnel tests were carried out at a speed of 38m/s in a test section of size 300 mm (width), 300 mm (height) and 600 mm (length), at Reynolds number 2.25 × 105. The tests were carried out with tandem and staggered placement of the airfoils in order to determine the optimum position of the wing with respect to the canard and also to determine the lift coefficient at various angles of attack. The CFD code FLUENT 5 was used to investigate the aerodynamic performance of a two-dimensional model to validate the wind tunnel results. The flow interaction was studied in the tandem and staggered arrangements in the wind tunnel as well as by the computational method. The k-ε turbulence model gave exceptionally good results.

2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


2013 ◽  
Vol 20 (05) ◽  
pp. 1350043 ◽  
Author(s):  
YUNCAI ZHAO ◽  
LEI HAN

A two-dimensional computational fluid dynamics (CFD) model was developed to study the load-bearing capacity of asymmetric texture under the state of fluid lubrication. The effects of asymmetric parameter H and the Reynolds number Re on hydrodynamic load-bearing capacity of the oil film were discussed. It was found that a decrease in asymmetric parameter H may significantly improve the load-bearing capacity, but an increase in Reynolds number Re may reduce this effect. For example, with a Re at 20, the load-bearing capacity increases by 73.44% with the H varying from 4 to 0.2. However, with a Re at 160, it has only an increase of 4.68% at the same conditions. In addition, the numerical results also showed that the load-bearing capacity will increase with the increase of Re in certain texture.


2017 ◽  
Vol 18 (2) ◽  
pp. 212-224
Author(s):  
Muhammad Abid ◽  
Hafiz Abdul Wajid ◽  
Muhammad Zohair Iqbal ◽  
Shayan Najam ◽  
Ali Arshad ◽  
...  

This paper presents design of aerodynamic downforce generating devices (front wing, rear wing and diffuser) to enhance the performance of the Formula Student Race Car using numerical and experimental studies. Numerical results using computational fluid dynamics (CFD) studies were primarily validated with the experimental results performed in the wind tunnel. It was concluded that the use of a downforce package can enhance the performance of the vehicle in the competition.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985729 ◽  
Author(s):  
Abdelrahman Kasem ◽  
Ahmad Gamal ◽  
Amr Hany ◽  
Hesham Gaballa ◽  
Karim Ahmed ◽  
...  

The article aims to prove the effectiveness of the proposed unmanned air vehicle design (The Propulsive Wing) through numerical and experimental means. The propulsive wing unmanned air vehicle is a completely new class of unmanned air vehicle, making disruptive changes in the aircraft industry. It is based on a distributed cross-flow electric fan propulsion system. When the fan starts to operate, the flow is drawn from the suction surface, provided by energy through the fan and expelled out of the airfoil trailing edge (TE). This causes a significant lift increase and drag reduction with respect to ordinary aircrafts, making it perfect for applications requiring low cruise speed such as firefighting, agriculture, and aerial photography. In this early stage of the investigation, our main aim is to prove that this design is applicable and the expected aerodynamic and propulsion improvements are achievable. This is done through a two-dimensional computational fluid dynamics investigation of the flow around an airfoil with an embedded cross-flow fan near its TE. A scaled wind tunnel model of the same geometry used in the computational fluid dynamics investigation was manufactured and used to perform wind tunnel testing. The computational fluid dynamics and wind tunnel results are compared for validation. Furthermore, an unmanned air vehicle model was designed and manufactured to prove that the propulsive wing concept is flyable. The article shows that the aerodynamic forces developed on the cross-flow fan airfoil are not only functions of Reynolds number and angle of attack as for standard airfoils but also function of the fan rotational speed. The results show the great effect of the rotational speed of fan on lift augmentation and thrust generation through the high momentum flow getting out of the fan nozzle. Wind tunnel tests show that the suction effect of the fan provides stall free operation up to very high angles of attack (40 degrees) leading to unprecedented values of lift coefficient up to 5.8. The flight test conducted showed the great potential of the new aircraft to perform the expected low cruise speed and high angles of attack flight.


Author(s):  
G M Atkinson

An array of rigid sails installed on a large powered ship could provide a viable means to reduce fuel oil consumption (FOC) and emissions by using the power of the wind as a source of supplementary propulsion. This paper describes the study of airflow around a concept ship design fitted with 14 segment rigid sails (SRS) using a virtual wind tunnel software application and also investigates the propulsive force that a fixed sail array could provide using computational fluid dynamics (CFD) analysis.


Sign in / Sign up

Export Citation Format

Share Document