Selecting the best growth model for elasmobranches
Age and growth information is essential for accurate stock assessment of fish, and growth model selection may influence the result of stock assessment. Previous descriptions of the age and growth of elasmobranches relied mainly on the von Bertalanffy growth model (VBGM). However, it has been noted that sharks, skates and rays exhibit significant variety in size, shape, and life-history traits. Given this variation, the VBGM may not necessarily provide the best fit for all elasmobranches. This study attempts to improve the accuracy of age estimates by testing four growth models—the VBGM, two-parameter VBGM, Robertson (Logistic) and Gompertz models—to fit observed and simulated length-at-age data for 37 species of elasmobranches. The best growth model was selected based on corrected Akaike’s Information Criterion (AICc), the AICc difference, and the AICc weight. The VBGM and two-parameter VBGM provide the best fit for species with slow growth and extended longevity (L∞ > 100 cm TL, 0.05 < k < 0.15 yr-1), such as pelagic sharks. For fast-growing small sharks (L∞ < 100 cm TL, kr or kg > 0.2 yr-1) in deep waters and for small-sized demersal skates/rays, the Robertson and the Gompertz models provide the best fit. The best growth models for small sharks in shallow waters are the two-parameter VBGM and the Robertson model, while all the species best fit by the Gompertz model are skates and rays.