scholarly journals Animal-oriented Virtual Environments: illusion, dilation, and discovery

Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural bases of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These issues will be presented in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and time dilation examples will be reviewed. Once these applications have been reviewed, implications for improving upon virtual models for inducing the mental phenomena of illusion and time dilation will be considered. To conclude, future directions for this research area will be presented, particularly with relevance to gene-environment interactions.

2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and time dilation will be considered. To conclude, future directions for integrating this research area into broader biological inquiry will be presented.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 202
Author(s):  
Bradly Alicea

As a research tool, virtual environments (VEs) hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating the use of VEs into a strategy of broader biological inquiry will be presented.


F1000Research ◽  
2015 ◽  
Vol 3 ◽  
pp. 202 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments (VEs) hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating the use of VEs into a strategy of broader biological inquiry will be presented.


2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment-enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating this research area into a strategy of broader biological inquiry will be presented.


2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment-enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating this research area into a strategy of broader biological inquiry will be presented.


2000 ◽  
Author(s):  
Ralph Mager ◽  
R. Stoermer ◽  
A. Roessler ◽  
F. Mueller-Spahn ◽  
A. Bullinger

2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2084
Author(s):  
Kostas Nizamis ◽  
Alkinoos Athanasiou ◽  
Sofia Almpani ◽  
Christos Dimitrousis ◽  
Alexander Astaras

Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.


Author(s):  
Sarah Beadle ◽  
Randall Spain ◽  
Benjamin Goldberg ◽  
Mahdi Ebnali ◽  
Shannon Bailey ◽  
...  

Virtual environments and immersive technologies are growing in popularity for human factors purposes. Whether it is training in a low-risk environment or using simulated environments for testing future automated vehicles, virtual environments show promise for the future of our field. The purpose of this session is to have current human factors practitioners and researchers demonstrate their immersive technologies. This is the eighth iteration of the “Me and My VE” interactive session. Presenters in this session will provide a brief introduction of their virtual reality, augmented reality, or virtual environment work before engaging with attendees in an interactive demonstration period. During this period, the presenters will each have a multimedia display of their immersive technology as well as discuss their work and development efforts. The selected demonstrations cover issues of designing immersive interfaces, military and medical training, and using simulation to better understand complex tasks. This includes a mix of government, industry, and academic-based work. Attendees will be virtually immersed in the technologies and research presented allowing for interaction with the work being done in this field.


2012 ◽  
Vol 2 (2) ◽  
pp. 15 ◽  
Author(s):  
Frederico Menine Schaf ◽  
Suenoni Paladini ◽  
Carlos Eduardo Pereira

<span style="color: #000000;"><span style="font-family: Times New Roman,serif;"><span style="font-size: x-small;">Recent evolutions of social networks, virtual environments, Web technologies and 3D virtual worlds motivate the adoption of new technologies in education, opening successive innovative possibilities. These technologies (or tools) can be employed in distance education scenarios, or can also enhance traditional learning-teaching (blended or hybrid learning scenario). It is known and a wide advocated issue that laboratory practice is essential to technical education, foremost in engineering. In order to develop a feasible implementation to this research area, a prototype was developed, called 3DAutoSysLab, in which a metaverse is used as social collaborative interface, experiments (real or simulated) are linked to virtual objects, learning objects are displayed as interactive medias, and guiding/feedback are supported via an autonomous tutoring system based on user's interaction data mining. This prototype is under test, but preliminary applied results indicate great acceptance and increase of motivation of students.</span></span></span>


Sign in / Sign up

Export Citation Format

Share Document