scholarly journals Animal-oriented Virtual Environments: illusion, dilation, and discovery

Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment-enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating this research area into a strategy of broader biological inquiry will be presented.

2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment-enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating this research area into a strategy of broader biological inquiry will be presented.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 202
Author(s):  
Bradly Alicea

As a research tool, virtual environments (VEs) hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating the use of VEs into a strategy of broader biological inquiry will be presented.


F1000Research ◽  
2015 ◽  
Vol 3 ◽  
pp. 202 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments (VEs) hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating the use of VEs into a strategy of broader biological inquiry will be presented.


2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and time dilation will be considered. To conclude, future directions for integrating this research area into broader biological inquiry will be presented.


2014 ◽  
Author(s):  
Bradly Alicea

As a research tool, virtual environments hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural bases of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These issues will be presented in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and time dilation examples will be reviewed. Once these applications have been reviewed, implications for improving upon virtual models for inducing the mental phenomena of illusion and time dilation will be considered. To conclude, future directions for this research area will be presented, particularly with relevance to gene-environment interactions.


Author(s):  
Daniel J Lurie ◽  
Daniel Kessler ◽  
Danielle S Bassett ◽  
Richard F. Betzel ◽  
Michael Breakspear ◽  
...  

The brain is a complex dynamical system composed of many interacting sub-regions. Knowledge of how these interactions reconfigure over time is critical to a full understanding of the brain’s functional architecture, the neural basis of flexible cognition and behavior, and how neural systems are disrupted in psychiatric and neurological illness. The idea that we might be able to study neural and cognitive dynamics through analysis of neuroimaging data has catalyzed substantial interest in methods which seek to estimate moment-to-moment fluctuations in functional connectivity (often referred to as “dynamic” or time-varying connectivity; TVC). At the same time, debates have emerged regarding the application of TVC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive relevance of resting TVC. These and other unresolved issues complicate the interpretation of resting TVC findings and limit the insights which can be gained from this otherwise promising research area. This article reviews the current resting TVC literature in light of these issues. We introduce core concepts, define key terms, summarize current controversies and open questions, and present a forward-looking perspective on how resting TVC analyses can be rigorously applied to investigate a wide range of questions in cognitive and systems neuroscience.


Author(s):  
Pooya Soltani ◽  
João Paulo Vilas-Boas

For effective learning and training, virtual environments may provide lifelike opportunities, and researchers are actively investigating their potential for educational purposes. Minimal research attention has been paid to the integration of multi-user virtual environments (MUVE) technology for teaching and practicing real sports. In this chapter, the authors reviewed the justifications, possibilities, challenges, and future directions of using MUVE systems. The authors addressed issues such as informal learning, design, engagement, collaboration, learning style, learning evaluation, motivation, and gender, followed by the identification of required elements for successful implementations. In the second part, the authors talked about exergames, the necessity of evaluation, and examples on exploring the behavior of players during playing. Finally, insights on the application of sports exergames in teaching, practicing, and encouraging real sports were discussed.


Author(s):  
Pooya Soltani ◽  
João Paulo Vilas-Boas

For effective learning and training, virtual environments may provide lifelike opportunities, and researchers are actively investigating their potential for educational purposes. Minimal research attention has been paid to the integration of multi-user virtual environments (MUVE) technology for teaching and practicing real sports. In this chapter, the authors reviewed the justifications, possibilities, challenges, and future directions of using MUVE systems. The authors addressed issues such as informal learning, design, engagement, collaboration, learning style, learning evaluation, motivation, and gender, followed by the identification of required elements for successful implementations. In the second part, the authors talked about exergames, the necessity of evaluation, and examples on exploring the behavior of players during playing. Finally, insights on the application of sports exergames in teaching, practicing, and encouraging real sports were discussed.


2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


Sign in / Sign up

Export Citation Format

Share Document