scholarly journals The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés Novaro ◽  
Pablo Carmanchahi

Background-Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods-All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results- As expected, there was a marked adrenal (p-value= .344e-12) and gonadal (p-value= 0.002656) response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value= 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value= 1.952e-11,COR=0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos. Discussion-Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.

2016 ◽  
Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés Novaro ◽  
Pablo Carmanchahi

Background-Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods-All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results- As expected, there was a marked adrenal (p-value= .344e-12) and gonadal (p-value= 0.002656) response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value= 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value= 1.952e-11,COR=0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos. Discussion-Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.


2016 ◽  
Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés Novaro ◽  
Pablo Carmanchahi

Background-Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods-All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results- As expected, there was a marked adrenal (p-value= .344e-12) and gonadal (p-value= 0.002656) response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value= 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value= 1.952e-11,COR=0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos. Discussion-Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2640 ◽  
Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A. Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés J. Novaro ◽  
Pablo Carmanchahi

BackgroundProviding the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase.MethodsAll of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations.ResultsAs expected, there was a marked adrenal (p-value = .3.4e−12) and gonadal (p-value = 0.002656) response due to seasonal variation inLama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos.DiscussionGuanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal’s life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Nadia abdelaty Abdelkader ◽  
Moustafa Hamed Abdelaleem ◽  
Mohammed El-Gharib Abo El- maaty ◽  
Heba Ismail Aly ◽  
Sayed Ahmed Sayed

Abstract Background Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and it is also a common cause of death in patients with chronic liver disease. The curative treatment options for HCC that are currently available are surgical resection, liver transplantation and radiofrequency ablation .Despite progressive improvements in the efficacy of RFA, the survival of patients with HCC who undergo RFA remains disappointing, mainly due to frequent intrahepatic recurrence of HCC after RFA. Aim of the work To evaluate the role of transient elastography (as an indirect indicator to degree of liver fibrosis) in prediction of denovo recurrence of hepatocellular carcinoma after radiofrequency ablation in hepatitis C related hepatocellular carcinoma .And to compare between transient elastography and other non invasive fibrosis indices in prediction of denovo recurrence of hepatocellular carcinoma after radiofrequency ablation hepatitis C related hepatocellular carcinoma Patients and methods This prospective cohrt study was conducted on hepatocellular carcinoma patient, who underwent radiofrequency ablation in Tropical Medicine Department in Eldemerdash and Ain Shams Specialized Hospital, HCC clinic Ain Shams University Hospitals, Cairo, Egypt between march, 2017 and May, 2019. Data of the patient, who underwent radiofrequency ablation during the study period, were reviewed and the patients who fulfilled the inclusion criteria were enrolled into this study. The patients who fulfilled the inclusion criteria and underwent radiofrequency ablation were followed up for 12 months. Results TE revealed 28 patients with F4 and only 2 patients with F3, the mean measurement of liver stiffness was (22.45 ± 10.36) KPa. There was a significant negative correlation between LS and denovo recurrence of HCC (mean of LS in patients with complete response was 17.19 ± 3.32 and the mean of LS in patient with denovo recurrence was 36,94 ± 5.93,with the The best cut off value ≥24.65 (p value < 0.001)). There was no significant correlation between CDC, FIB4, API scores and denovo recurrence of HCC. Also it was found that the LS was significantly associated with prediction of manifestation of hepatic decompensation after RFA (means of LS in patient without manifestation decompensation after RFA (p value <0.001) .Regarding prediction of mortality, LS at cut off value > 42 .75 (p value = 0,031) was significantly associated with prediction of mortality after one year of RFA. As regard serum non invasive fibrosis indices our results showed correlation between FIB4 score and hepatic decompensation after one year of intervention (the mean of FIB4 score in patients ascites and jaundice was 6.05 ± 4.71 (p value = 0.05) ).Therewas no statistically significant correlation between CDS and API with hepatic decompensation after RFA .As regard role of serum non invasive fibrosis indices in prediction of mortality after RFA, FIB4 score, CDS and API were statistically non significant. Conclusion Our data suggest that LS measurement is a useful predictor of HCC de novorecurrence overall survival and possibility of hepatic decompensation after RFA


2015 ◽  
Vol 37 (3) ◽  
pp. 518-531 ◽  
Author(s):  
Paolo Ruggeri ◽  
Andrea Splendiani ◽  
Massimo Giovannotti ◽  
Tatiana Fioravanti ◽  
Giulia Occhipinti ◽  
...  

2016 ◽  
Vol 102 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Emily R. Hannon ◽  
John M. Kinsella ◽  
Dana M. Calhoun ◽  
Maxwell B. Joseph ◽  
Pieter T. J. Johnson

Sign in / Sign up

Export Citation Format

Share Document