scholarly journals Size-dependent functional response of Xenopus laevis on mosquito larvae

Author(s):  
Corey J Thorp ◽  
Mhairi E Alexander ◽  
James R Vonesh ◽  
John Measey

Predators can play an important role in regulating prey abundance and diversity, determining food web structure and function, and contributing to important ecosystem services, including the regulation of agricultural pests and disease vectors. Thus, the ability to predict predator impact on prey is an important goal in ecology. Often predators of the same species are assumed to be functionally equivalent, despite considerable individual variation in predator traits known to be important for shaping predator-prey interactions, like body size. This assumption may greatly oversimplify our understanding of within species functional diversity and undermine our ability to predict predator effects on prey. Here we examine the degree to which predator-prey interactions are functionally homogenous across a natural range of predator body size. Specifically, we quantify the size-dependence of the functional response of African clawed frogs (Xenopus laevis) preying on mosquito larvae (Culex pipiens). Three size classes of predators, small (15-30mm snout-vent length), medium (50-60mm) and large (105-120mm), were presented with five densities of prey to determine functional response type and to estimate search efficiency and handling time parameters generated from the models. The results of mesocosm experiments show that functional response of X. laevis changed with size: small predators exhibited a Type II response, while medium and large predators exhibited Type III responses. Both functional response and behavioural data showed an inversely proportional relationship between predator attack rate and predator size. Small and medium predators had highest and lowest handling time respectively. That the functional response changed with the size of predator suggests that predators with overlapping cohorts may have a dynamic impact on prey populations. Therefore, predicting the functional response of a single size-matched predator in an experiment may be a misrepresentation of the predator’s potential impact on a prey population.

2018 ◽  
Author(s):  
Corey J Thorp ◽  
Mhairi E Alexander ◽  
James R Vonesh ◽  
John Measey

Predators can play an important role in regulating prey abundance and diversity, determining food web structure and function, and contributing to important ecosystem services, including the regulation of agricultural pests and disease vectors. Thus, the ability to predict predator impact on prey is an important goal in ecology. Often predators of the same species are assumed to be functionally equivalent, despite considerable individual variation in predator traits known to be important for shaping predator-prey interactions, like body size. This assumption may greatly oversimplify our understanding of within species functional diversity and undermine our ability to predict predator effects on prey. Here we examine the degree to which predator-prey interactions are functionally homogenous across a natural range of predator body size. Specifically, we quantify the size-dependence of the functional response of African clawed frogs (Xenopus laevis) preying on mosquito larvae (Culex pipiens). Three size classes of predators, small (15-30mm snout-vent length), medium (50-60mm) and large (105-120mm), were presented with five densities of prey to determine functional response type and to estimate search efficiency and handling time parameters generated from the models. The results of mesocosm experiments show that functional response of X. laevis changed with size: small predators exhibited a Type II response, while medium and large predators exhibited Type III responses. Both functional response and behavioural data showed an inversely proportional relationship between predator attack rate and predator size. Small and medium predators had highest and lowest handling time respectively. That the functional response changed with the size of predator suggests that predators with overlapping cohorts may have a dynamic impact on prey populations. Therefore, predicting the functional response of a single size-matched predator in an experiment may be a misrepresentation of the predator’s potential impact on a prey population.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5813 ◽  
Author(s):  
Corey J. Thorp ◽  
Mhairi E. Alexander ◽  
James R. Vonesh ◽  
John Measey

Predators can play an important role in regulating prey abundance and diversity, determining food web structure and function, and contributing to important ecosystem services, including the regulation of agricultural pests and disease vectors. Thus, the ability to predict predator impact on prey is an important goal in ecology. Often, predators of the same species are assumed to be functionally equivalent, despite considerable individual variation in predator traits known to be important for shaping predator–prey interactions, like body size. This assumption may greatly oversimplify our understanding of within-species functional diversity and undermine our ability to predict predator effects on prey. Here, we examine the degree to which predator–prey interactions are functionally homogenous across a natural range of predator body sizes. Specifically, we quantify the size-dependence of the functional response of African clawed frogs (Xenopus laevis) preying on mosquito larvae (Culex pipiens). Three size classes of predators, small (15–30 mm snout-vent length), medium (50–60 mm) and large (105–120 mm), were presented with five densities of prey to determine functional response type and to estimate search efficiency and handling time parameters generated from the models. The results of mesocosm experiments showed that type of functional response of X. laevis changed with size: small predators exhibited a Type II response, while medium and large predators exhibited Type III responses. Functional response data showed an inversely proportional relationship between predator attack rate and predator size. Small and medium predators had highest and lowest handling time, respectively. The change in functional response with the size of predator suggests that predators with overlapping cohorts may have a dynamic impact on prey populations. Therefore, predicting the functional response of a single size-matched predator in an experiment may misrepresent the predator’s potential impact on a prey population.


Author(s):  
Apima B. Samuel ◽  
Lawi O. George ◽  
Nthiiri J. Kagendo

Predator-prey models describe the interaction between two species, the prey which serves as a food source to the predator. The migration of the prey for safety reasons after a predator attack and the predator in search of food, from a patch to another may not be instantaneous. In this paper, a Rosenzweig-MacAurther model with a Holling-type II predator functional response and time delay in the migration of both species is developed and analysed. Stability analysis of the system shows that depending on the prey growth and prey migration rates either both species go to extinction or co-exist. Numerical simulations show that a longer delay in the migration of the species leads makes the model to stabilize at a slower rate compared to when the delay is shorter. Relevant agencies likethe Kenya Wildlife Service should address factors that slow down migration of species, for example, destruction of natural habitats for human settlement and activities, which may cause delay in migration.


2022 ◽  
Vol 9 ◽  
Author(s):  
Pavel Kratina ◽  
Benjamin Rosenbaum ◽  
Bruno Gallo ◽  
Elena L. Horas ◽  
Eoin J. O’Gorman

Environmental temperature and body size are two prominent drivers of predation. Despite the ample evidence of their independent effects, the combined impact of temperature and predator-prey body size ratio on the strength and stability of trophic interactions is not fully understood. We experimentally tested how water temperature alters the functional response and population stability of dragonfly nymphs (Cordulegaster boltonii) feeding on freshwater amphipods (Gammarus pulex) across a gradient of their body size ratios. Attack coefficients were highest for small predators feeding on small prey at low temperatures, but shifted toward the largest predators feeding on larger prey in warmer environments. Handling time appeared to decrease with increasing predator and prey body size in the cold environment, but increase at higher temperatures. These findings indicate interactive effects of temperature and body size on functional responses. There was also a negative effect of warming on the stability of predator and prey populations, but this was counteracted by a larger predator-prey body size ratio at higher temperatures. Here, a greater Hill exponent reduced feeding at low prey densities when predators were much larger than their prey, enhancing the persistence of both predator and prey populations in the warmer environment. These experimental findings provide new mechanistic insights into the destabilizing effect of warming on trophic interactions and the key role of predator-prey body size ratios in mitigating these effects.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sébastien M. J. Portalier ◽  
Gregor F. Fussmann ◽  
Michel Loreau ◽  
Mehdi Cherif

First derivations of the functional response were mechanistic, but subsequent uses of these functions tended to be phenomenological. Further understanding of the mechanisms underpinning predator-prey relationships might lead to novel insights into functional response in natural systems. Because recent consideration of the physical properties of the environment has improved our understanding of predator-prey interactions, we advocate the use of physics-based approaches for the derivation of the functional response from first principles. These physical factors affect the functional response by constraining the ability of both predators and prey to move according to their size. A physics-based derivation of the functional response should thus consider the movement of organisms in relation to their physical environment. One recent article presents a model along these criteria. As an initial validation of our claim, we use a slightly modified version of this model to derive the classical parameters of the functional response (i.e., attack rate and handling time) of aquatic organisms, as affected by body size, buoyancy, water density and viscosity. We compared the predictions to relevant data. Our model provided good fit for most parameters, but failed to predict handling time. Remarkably, this is the only parameter whose derivation did not rely on physical principles. Parameters in the model were not estimated from observational data. Hence, systematic discrepancies between predictions and real data point immediately to errors in the model. An added benefit to functional response derivation from physical principles is thus to provide easy ways to validate or falsify hypotheses about predator-prey relationships.


2013 ◽  
Vol 4 (11) ◽  
pp. 1083-1090 ◽  
Author(s):  
Dominique Gravel ◽  
Timothée Poisot ◽  
Camille Albouy ◽  
Laure Velez ◽  
David Mouillot

Sign in / Sign up

Export Citation Format

Share Document