scholarly journals Failure to respond to a coral disease outbreak: Potential costs and consequences

Author(s):  
William F Precht

A coral disease with white plague-like signs was observed near Virginia Key, Florida, in September 2014. The disease outbreak directly followed a regional high temperature coral-bleaching event. Now called stony coral tissue loss disease (SCTLD), it has spread the length of the Florida Reef Tract from Key West to Martin County, a distance of about 450 km. Recently, the disease has also been observed at a number of sites throughout the Caribbean. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this outbreak is arguably one of the most lethal ever recorded. The initial response to this catastrophic disease by resource mangers with purview over the ecosystem was slow. There is generally a very short window of opportunity to intervene in disease amelioration or eradication in the marine environment. This slow response enabled the disease to spread unchecked. Why was the response to the loss of our coral reefs to a coral disease epidemic, such a massive failure? This includes our failure as scientists, regulators, resource managers, the local media, and policy makers alike. This review encapsulates the numerous reasons for our failures during the first few years of the outbreak. Specifically, I show how the Port Miami dredging project that was ongoing at the time of the initial outbreak created a distraction as local NGO's, regulatory agencies, and resource managers initially blamed the project for observed large-scale coral losses. However, detailed analysis of 650 tagged corals that were part of a repeated measures monitoring program required for permit compliance associated with the Port Miami dredge project reveal that both disease susceptibility and coral mortality are invariant with the results collected by a number of scientific teams throughout the region. Finally, when the agencies responded to the outbreak the effort it was too little and much too late to make a meaningful difference. Because of the languid management response to this outbreak, we are now sadly faced with a situation where much of our management efforts are focused on the rescue of genetic material from coral species now at risk of regional extinction.

2019 ◽  
Author(s):  
William F Precht

A coral disease with white-plague like signs was observed near Virginia Key, Florida, in September 2014. The disease outbreak directly followed a regional high temperature coral-bleaching event. Now called stony coral tissue loss disease (SCTLD), it has spread the length of the Florida Reef Tract from Key West to Martin County, a distance of about 450 km. Recently, the disease has also been observed at a number of sites throughout the Caribbean. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this outbreak is arguably one of the most lethal ever recorded. The initial response to this catastrophic disease by resource mangers with purview over the ecosystem was slow. There is generally a very short window of opportunity to intervene in disease amelioration or eradication in the marine environment. This slow response enabled the disease to spread unchecked. Why was the response to the loss of our coral reefs to a coral disease epidemic, such a massive failure? This includes our failure as scientists, regulators, resource managers, the local media, and policy makers alike. This review encapsulates the numerous reasons for our failures during the first few years of the outbreak. Specifically, I show how the Port Miami dredging project that was ongoing at the time of the initial outbreak created a distraction as local NGO's, regulatory agencies, and resource managers initially blamed the project for observed large-scale coral losses. However, detailed analysis of 650 tagged corals that were part of a repeated measures monitoring program required for permit compliance associated with the Port Miami dredge project reveal that both disease susceptibility and coral mortality are invariant with the results collected by a number of scientific teams throughout the region. Finally, when the agencies responded to the outbreak the effort it was too little and much too late to make a meaningful difference. Because of the languid management response to this outbreak, we are now sadly faced with a situation where much of our management efforts are focused on the rescue of genetic material from coral species now at risk of regional extinction.


Author(s):  
William F Precht

A coral disease with white plague-like signs was observed near Virginia Key, Florida, in September 2014. The disease outbreak directly followed a regional high temperature coral-bleaching event. Now called stony coral tissue loss disease (SCTLD), it has spread the length of the Florida Reef Tract from Key West to Martin County, a distance of about 450 km. Recently, the disease has also been observed at a number of sites throughout the Caribbean. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this outbreak is arguably one of the most lethal ever recorded. The initial response to this catastrophic disease by resource mangers with purview over the ecosystem was slow. There is generally a very short window of opportunity to intervene in disease amelioration or eradication in the marine environment. This slow response enabled the disease to spread unchecked. Why was the response to the loss of our coral reefs to a coral disease epidemic, such a massive failure? This includes our failure as scientists, regulators, resource managers, the local media, and policy makers alike. This review encapsulates the numerous reasons for our failures during the first few years of the outbreak. Specifically, I show how the Port Miami dredging project that was ongoing at the time of the initial outbreak created a distraction as local NGO's, regulatory agencies, and resource managers initially blamed the project for observed large-scale coral losses. However, detailed analysis of 650 tagged corals that were part of a repeated measures monitoring program required for permit compliance associated with the Port Miami dredge project reveal that both disease susceptibility and coral mortality are invariant with the results collected by a number of scientific teams throughout the region. Finally, when the agencies responded to the outbreak the effort it was too little and much too late to make a meaningful difference. Because of the languid management response to this outbreak, we are now sadly faced with a situation where much of our management efforts are focused on the rescue of genetic material from coral species now at risk of regional extinction.


Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2021 ◽  
Vol 6 ◽  
pp. 1-47
Author(s):  
William Precht

Stony coral tissue loss disease (SCTLD) was first observed in September 2014 near Virginia Key, Florida. In roughly six years, the disease spread throughout Florida and into the greater Caribbean basin. The high prevalence of SCTLD and high resulting mortality in coral populations, and the large number of susceptible species affected, suggest that this outbreak is one of the most lethal ever recorded. The initial recognition and management response to this catastrophic disease in Florida was slow, which delayed the start of monitoring programs and prevented coordinated research programs by at least two years. The slow management response was a result of several factors that operated concurrently. First, the Port Miami dredging project was ongoing during the coral disease epidemic and dredging rather than SCTLD was blamed by some managers and local environmental groups for the extreme coral losses reported in the project’s compliance monitoring program. Second, this blame was amplified in the media because dredging projects are intuitively assumed to be bad for coral reefs. Third, during this same time State of Florida policy prohibited government employees to acknowledge global warming in their work. This was problematic because ocean warming is a proximal cause of many coral diseases. As a result, the well-known links between warming and coral disease were ignored. A consequence of this policy was that the dredging project provided an easy target to blame for the coral mortality noted in the monitoring program, despite convincing data that suggested otherwise. Specifically, results from the intensive compliance monitoring program, conducted by trained scientific divers, were clear. SCTLD that was killing massive numbers of corals throughout Florida was also killing corals at the dredge site – and in the same proportions and among the same suite of species. While eradication of the disease was never a possibility, early control measures may have slowed its spread or allowed for the rescue of significant numbers of large colonies of iconic species. This coral disease outbreak has similarities to the COVID-19 pandemic in the United States and there are lessons learned from both that will improve disease response outcomes in the future, to the benefit of coral reefs and human populations.


2019 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rachele Spadafore ◽  
Ryan Fura ◽  
William F. Precht ◽  
Steven V. Vollmer

Environmental compliance monitoring associated with the Port Miami dredging project (2013–2015), designed to assess the impact of project-generated sediments on the local coral community, fortuitously captured a thermal bleaching event and the first reports of an emergent, highly contagious, white-plague-like coral disease outbreak in the fall of 2014. The disease, now termed stony coral tissue loss disease (SCTLD), has decimated reefs throughout Florida and is now spreading across the Caribbean. The high prevalence of disease, the number of affected species, and the high mortality of corals affected suggests SCTLD may be the most lethal coral disease ever recorded. Previous analyses of the dredge monitoring data have reached mixed conclusions about the relative impact of dredging on coral mortality and has often parsed out disease susceptible individuals to isolate the impacts of dredging only. We use multi-variate analyses, including time-based survival analyses, to examine the timing and impacts of dredging, coral bleaching, and disease on local coral mortality. By examining the status of corals monthly from the October 2013 to July 2015 observational period, we found that coral mortality was not significantly affected by a coral’s proximity to the dredge site or sediment burial. Instead, coral mortality was most strongly impacted by disease and the emergence of SCTLD during the monitoring period. During the 2-year monitoring period, 26.3% of the monitored corals died, but the only conditions significantly affected by the dredge were partial burial and partial mortality. The strongest link to mortality was due to disease, which impacted coral species differently depending on their susceptibility to SCTLD. The focus on disturbances associated with dredging created a circumstance where the greater impacts of this emergent disease were downplayed, leading to a false narrative of the resulting mortality on the local coral communities. The results of this study reveal that while local events such as a dredging project do have quantifiable effects and can be harmful to corals, regional and global threats that result in mass coral mortality such as thermal stress and disease represent an existential threat to coral reefs and must be urgently addressed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Karen L. Neely ◽  
Colin P. Shea ◽  
Kevin A. Macaulay ◽  
Emily K. Hower ◽  
Michelle A. Dobler

Since 2014, stony coral tissue loss disease (SCTLD) has led to large-scale mortality of over 20 coral species throughout the Florida Reef Tract. In 2019, in-water disease intervention strategies were implemented to treat affected corals. Two treatment strategies were employed: (1) topical application of an amoxicillin paste directly to disease margins, and (2) application of a chlorinated epoxy to disease margins as well as an adjacent “disease break” trench. Effectiveness of treatments on 2,379 lesions from 725 corals representing five species was evaluated using mixed effects logistic regression models which demonstrated substantially greater effectiveness of amoxicillin compared to chlorine-treated lesions across all species up to 3 months post-treatment. As a result of the failed chlorinated epoxy treatments, any new lesions that appeared during subsequent monitoring events were treated with amoxicillin paste, and all corals were monitored and treated as needed approximately every 2 months for up to 24 months. The health status of 1664 amoxicillin-treated corals during each monitoring event was used to model the probability of a coral being uninfected over time. Models included species and geographic regions as variables. The appearance of new lesions (reinfection rates) varied by species, and offshore sites showed greater reinfection rates than inshore sites; however, all sites and species exhibited a decreased probability of reinfection with time since initial treatment. We conclude that topical amoxicillin treatments are highly effective at halting SCTLD lesions and that through initial and follow-up treatments as needed, colonies and reef sites will progress toward a lower prevalence of SCTLD.


Coral Reefs ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 861-866 ◽  
Author(s):  
Nuria Estrada-Saldívar ◽  
Ana Molina-Hernández ◽  
Esmeralda Pérez-Cervantes ◽  
Francisco Medellín-Maldonado ◽  
F. Javier González-Barrios ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
Abdur Rosyid ◽  
Oktiyas Muzaky Luthfi

Coral disease now became main factor of coral degradation in the world. There is still a few report about coral disease in Kepulauan Seribu Marine National Park (TNKPS) include of white syndrome (WS) in Montipora sp. WS was characterized by white area on coral surface at several stages. WS had caused coral tissue loss and leaved bare CaCO3 skeleton that was caused by pathogenic Vibrio coralliitycus associated with other microorganisms. In this study the progress of WS calculated by measurement of the distances of WS that moved from diseased to healty coral surface. All calculations was performed used ImageJ Software. Our result showed that WS progression rate in first week was 9.06 cm2 and the second week was 2.37 cm2. Total coral tissue mortality was 12.03% for 2 weeks.


2016 ◽  
Author(s):  
Margaret W Miller ◽  
Jocelyn Karazsia ◽  
Carolyn E Groves ◽  
Sean Griffin ◽  
Tom Moore ◽  
...  

The federal channel at Port of Miami, Florida, USA, was dredged between late 2013 and early 2015, to widen and deepen the channel. While the precise effects of the dredging on surrounding coral reefs are not well quantified, previously published remote sensing analyses, as well as agency and anecdotal reports suggest the most severe and largest area of sedimentation occurred on a coral reef feature referred to as the Inner Reef, particularly in the sector north of the channel. A regional warm-water mass bleaching event followed by a coral disease outbreak during this same time frame confounded the assessment of dredging-related impacts to coral reefs adjacent to the federal channel. In-water field assessments conducted after the completion of dredging and a time series analysis of tagged corals photographed pre-, during, and post-dredging, are used to discern dredging-related sedimentation impacts for the Inner Reef north. Results indicate increased sediment accumulation, severe in certain times and places, and an associated biological response, including significantly greater proportion of live coral tissue loss, occurred within coral reef sites located closer to the channel. Dredging projects near valuable and sensitive habitats subject to local and global stressors require monitoring methods capable of discerning non-dredging related impacts and adaptive management to ensure predicted and unpredicted project-related impacts are quantified. Anticipated increasing frequency and intensity of warming stress also suggests that manageable- but- unavoidable local stressors such as dredging should be partitioned from the warmest times of year.


Sign in / Sign up

Export Citation Format

Share Document