Rethinking Ecology
Latest Publications


TOTAL DOCUMENTS

28
(FIVE YEARS 15)

H-INDEX

4
(FIVE YEARS 2)

Published By Pensoft Publishers

2534-9260

2021 ◽  
Vol 6 ◽  
pp. 65-92
Author(s):  
Kennedy Rubert-Nason ◽  
AM Aramati Casper ◽  
Matt Jurjonas ◽  
Caitlin Mandeville ◽  
Rebecca Potter ◽  
...  

The causes and consequences of global change are well-documented, as are mitigation and adaptation strategies. However, human actions continue to fail in building adequate socio-ecological resilience to the accelerating threats of global change. Translational science, which focuses on connecting scientific research to human benefits, is imperative to building resilience to a confluence of global change threats because it brings the implications of theory and empirical research into practice. Translational ecology, an approach to knowledge co-creation that is grounded in equitable, inclusive, empathetic, and just partnerships among administrators, policy makers, scholars, practitioners, and the public, has immense potential to bring about the rapid and expansive social, ecological and political changes necessary to build resilience to global change threats. Here, we articulate a need for greater engagement of ecologists and other professionals in translational initiatives addressing seven major resilience building challenges, and propose a framework that lowers barriers to participation and promotes stronger relationships among stakeholders. We recommend specific actions that ecologists can take based on their situation, as well as evidence and demonstrated need, to foster resilience building through their contributions to communication, policy, education, knowledge creation, leadership, and service as role models. We conclude with an urgent call for expansive engagement of ecologists and other professionals in initiatives that combat misinformation, partner equitably with communities in knowledge creation, cultivate empathy and compassion, bolster public trust in science, and ultimately build decentralized communities of practice that enable rapid and high-impact responses to global change.


2021 ◽  
Vol 6 ◽  
pp. 49-64
Author(s):  
James E. O'Dwyer ◽  
Nicholas P. Murphy

The capacity of species to tolerate physical stressors is critical in a world of increasing environmental instability, however, past selective environments should dramatically impact on future stress tolerance, particularly in isolated populations. Through stabilising selection, long-term environmental stasis may reduce physiological tolerance, creating an evolutionary legacy where populations are less fit if environments change. Few empirical studies have investigated this evolutionary legacy of past selection, and of particular interest whether stabilising selection in a benign environment reduces stress tolerance in natural systems. Here we use multiple populations of salt-lake invertebrates (Coxiella striata, Austrochiltonia subtenuis) with either stable or fluctuating environmental histories to investigate the relationship between stabilising selection and environmental stress resistance. Tolerance to both salinity and temperature stress were examined in invertebrate populations from lakes with long-term (decadal) stable environments and compared with populations from lakes with extreme salinity variations. Individuals from stable environments demonstrated significantly lower survival under both increasing salinity and temperature stresses when compared with environmentally unstable populations. Our results support the hypothesis that the evolutionary legacy from stabilising selection in constant environments leads to reduced stress tolerance. This finding demonstrates that under an increasingly variable climate, the evolutionary legacies of populations will be critical for future survival and adaptation.


2021 ◽  
Vol 6 ◽  
pp. 1-47
Author(s):  
William Precht

Stony coral tissue loss disease (SCTLD) was first observed in September 2014 near Virginia Key, Florida. In roughly six years, the disease spread throughout Florida and into the greater Caribbean basin. The high prevalence of SCTLD and high resulting mortality in coral populations, and the large number of susceptible species affected, suggest that this outbreak is one of the most lethal ever recorded. The initial recognition and management response to this catastrophic disease in Florida was slow, which delayed the start of monitoring programs and prevented coordinated research programs by at least two years. The slow management response was a result of several factors that operated concurrently. First, the Port Miami dredging project was ongoing during the coral disease epidemic and dredging rather than SCTLD was blamed by some managers and local environmental groups for the extreme coral losses reported in the project’s compliance monitoring program. Second, this blame was amplified in the media because dredging projects are intuitively assumed to be bad for coral reefs. Third, during this same time State of Florida policy prohibited government employees to acknowledge global warming in their work. This was problematic because ocean warming is a proximal cause of many coral diseases. As a result, the well-known links between warming and coral disease were ignored. A consequence of this policy was that the dredging project provided an easy target to blame for the coral mortality noted in the monitoring program, despite convincing data that suggested otherwise. Specifically, results from the intensive compliance monitoring program, conducted by trained scientific divers, were clear. SCTLD that was killing massive numbers of corals throughout Florida was also killing corals at the dredge site – and in the same proportions and among the same suite of species. While eradication of the disease was never a possibility, early control measures may have slowed its spread or allowed for the rescue of significant numbers of large colonies of iconic species. This coral disease outbreak has similarities to the COVID-19 pandemic in the United States and there are lessons learned from both that will improve disease response outcomes in the future, to the benefit of coral reefs and human populations.


2020 ◽  
Vol 5 ◽  
pp. 1-35
Author(s):  
Owen M. Gilbert

Throughout the history of life on earth, rare and complex innovations have periodically increased the efficiency with which abiotic free energy and biotic resources are converted to biomass and organismal diversity. Such macroevolutionary expansions have increased the total amount of abiotic free energy utilized by life and shaped the earth’s ecosystems. Meanwhile, Darwin’s theory of natural selection assumes a historical, worldwide state of effective resource limitation, which could not possibly be true if life evolved from one or a few original ancestors. In this paper, I analyze the self-contradiction in Darwin’s theory that comes from viewing the world and universe as effectively resource limited. I then extend evolutionary theory to include a second deterministic evolutionary force, natural reward. Natural reward operates on complex inventions produced by natural selection and is analogous to the reward for innovation in human economic systems. I hypothesize that natural reward, when combined with climate change and extinction, leads to the increased innovativeness, or what I call the advancement, of life with time. I then discuss applications of the theory of natural reward to the evolution of evolvability, the apparent sudden appearance of new forms in the fossil record, and human economic evolution. I conclude that the theory of natural reward holds promise as an explanation for the historical advancement of life on earth.


2019 ◽  
Vol 4 ◽  
pp. 133-148
Author(s):  
Sophie M. Dupont ◽  
Lauréline Guinnefollau ◽  
Christiane Weber ◽  
Odile Petit

Among the pressures introduced by urbanization, artificial light at night (ALAN) can be problematic, particularly for nocturnal species. Populations of European hamsters (Cricetus cricetus) have dramatically decreased in France since 1972 because of habitat loss due to urbanisation and changes in agricultural methods. The conservation project Life Alister aims to increase the abundance of this species in suburban areas via hamster release. However, the success of this population-restoration project may be compromised due to the possible effects of ALAN on the daily and seasonal cycles and behaviour of this nocturnal species. To understand how hamsters may respond to relocation, we experimentally studied the impact of ALAN on hamster foraging, a decisive behaviour for survival in natural habitats. This study assessed the behavioural responses of 18 animals when choosing between two food sources of different palatability in two different lighting conditions: artificial light (4 or 40 lux) or darkness. Our results show that hamsters avoided lighting that mimics suburban streetlights, particularly when grooming. Moreover, this study reveals that hamsters do not avoid street-lit areas when highly palatable food is present, suggesting they would be more susceptible to predation under these circumstances. Our results suggest that the adverse effects of ALAN on the behaviour of hamsters released on the outskirts of developed suburban areas could be limited by restricting the number of street lights, moderating the intensity of street lighting, or switching lights off during the hours hamsters are most active. We further recommend that wildlife managers avoid planting plants that are highly palatable to hamsters close to lighting in suburban areas to limit the risk of predation for this species.


2019 ◽  
Vol 4 ◽  
pp. 119-132 ◽  
Author(s):  
Miriam A. Zemanova

The Earth’s biodiversity is currently experiencing immense pressure from habitat loss, overexploitation, global climate change, and invasive species, which escalate the global extinction crisis. Comprehensive knowledge of the extent and impact of biodiversity loss is therefore critical for determining species vulnerability and prioritizing conservation goals. An integral part of wildlife conservation research and management is nowadays genetic sampling. Animal DNA has been traditionally obtained invasively, from blood or other tissues, however public concerns over animal welfare require that animals are affected as little as possible during research. One of the ways to minimize the impact on wildlife animal welfare is to use non-invasive genetic sampling. Even though non-invasive genetic sampling techniques have been developed for many animal species, it is not clear how often they are being implemented. Here, I present an overview of recently published articles on genetics in amphibians, birds, carnivores, molluscs and rodents, for which I examined whether they used a lethal, invasive or non-invasive DNA sampling technique. Disappointingly, only 22% of the identified relevant studies implemented the available non-invasive genetic sampling method. I conclude highlighting the need for better implementation of non-invasive DNA collection methods in wildlife research through raising awareness, increasing financial support, and introducing more stringent criteria for obtaining research permits.


2019 ◽  
Vol 4 ◽  
pp. 115-118
Author(s):  
William Wetzel ◽  
Heather Kharouba ◽  
Moria Robinson ◽  
Marcel Holyoak ◽  
Richard Karban

SADIE (Spatial Analysis by Distance Indices) is designed specifically to quantify patterns in spatially-referenced count-based data. It was developed for dealing with data that can be considered ‘patchy’. Such distributions are commonly found, for example, in insect populations where discrete patches of individuals are often evident. The distributions of such populations have ‘hard edges’, with patches and gaps occurring spatially. In these cases variance of abundance does not vary smoothly, but discontinuously. In this paper we outline the use of SADIE and provide free access to the SADIE software suite, establishing Rethinking Ecology as its permanent home. Finally, we review the use of SADIE and demonstrate its use in a wide variety of sub-disciplines within the general field of ecology.


2019 ◽  
Vol 4 ◽  
pp. 103-114
Author(s):  
Rucha Karkarey ◽  
Amod Zambre ◽  
Kavita Isvaran ◽  
Rohan Arthur

Historically unfished, high-density spawning aggregations are vanishingly uncommon. Behavioural observations from such aggregations are rare, and may be sometimes novel and unexpected. Given the weight of evidence required to document spawning aggregations, how can we best report rare and unusual behavioural variations in spawning populations? Based on two years of in-water observations of a high-density spawning aggregation of the squaretail grouper in the Lakshadweep Archipelago, we described a previously unreported male alternative reproductive tactic (ART) and an inverse size assortment with large males courting several small females that shoaled mid-water (https://doi.org/10.1186/s12898-017-0120-5). In critiquing our manuscript, it has been suggested that our observations, methodologies and interpretation are inadequate, flawed, and do not fit within currently accepted theory (https://doi.org/10.1186/s12898-018-0206-8). While offering a detailed counter of the main methodological and theoretical criticisms we question how best to document and interpret novel behaviours in poorly known systems. Reporting novelty itself can hardly be the basis of criticism. Our report relied on direct in-water observations, conducted at peak densities over two spawning years. The critique ignores this, choosing instead to focus on a supplementary video which was not the basis of our conclusions. Like other researchers working on this species, we did not directly observe mating, but report courtship as a well-established proxy used across mating systems studies. Apart from these methodological concerns, the authors suggest that there is no theoretical support for our observations. However, sexual selection theory provides well-established frameworks showing that, at very high mating densities, a variety of tactics can emerge, that often vary considerably between populations and locations. In our original paper, we use this broader theory of sexual selection together with detailed behavioural data to propose plausible evolutionary explanations that bear testing in these novel, high-density systems. We agree with the authors that novel observations should be scrutinised carefully as they can challenge our current understanding of the range of behaviours populations display and serve as a springboard for theoretical advancement. Given their rarity, these observations should be evaluated against the rigour of their documentation and the transparency of their reporting. In this context, we hope our carefully documented observations serve as a useful addition to the fascinating and complex natural history of species like the squaretail grouper.


2019 ◽  
Vol 4 ◽  
pp. 79-87 ◽  
Author(s):  
Apostolos-Manuel Koussoroplis ◽  
Toni Klauschies ◽  
Sylvain Pincebourde ◽  
David Giron ◽  
Alexander Wacker

In their recent contribution, Wetzel et al. [Wetzel et al. (2016) Variability in plant nutrients reduces insect herbivore performance. Nature 539: 425-427] predict that variance in the plant nutrient level reduces herbivore performance via the nonlinear averaging effect (named Jensen’s effect by the authors) while variance in the defense level does not. We argue that the study likely underestimates the potential of plant defenses’ variance to cause Jensen’s effects for two reasons. First, this conclusion is based on the finding that the average Jensen’s effect of various defense traits on various herbivores is zero which does not imply that the Jensen’s effect of specific defense traits on specific herbivores is null, just that the effects balance each other globally. Second, the study neglects the nonlinearity effects that may arise from the synergy between nutritive and defense traits or between co-occurring defenses on herbivore performance. Covariance between interacting plant defense traits, or between plant nutritive and defense traits, can affect performance differently than would nutritive or single plant defense variance alone. Overlooking the interactive effects of plant traits and the traits’ covariance could impair the assessment of the true role of plant trait variability on herbivore populations in natural settings.


2019 ◽  
Vol 4 ◽  
pp. 89-101 ◽  
Author(s):  
Piotr Bajdek

Biogeographic distribution of infected plants and the continental drift theory allow a tentative time calibration of the phylogenetic tree of Pospiviroidae. Hypothetically, viroids evolved in the late Early Cretaceous shortly after the appearance of angiosperms, which constitute their only known hosts. No decline in the estimated divergence rates of Pospiviroidae is observed during the Late Cretaceous but it appears that they abruptly decreased at the Cretaceous-Paleogene boundary. However, an adaptive radiation of Pospiviroidae which occurred in the late Paleocene may reflect a recovery from the Cretaceous-Paleogene (K–Pg) mass extinction. It seems that the evolutionary history of viroids has been in part shaped by radiation and extinction events of angiosperms. Herein, for the first time I show the probable impact of a mass extinction event on the divergence rates of subviral pathogens, which are the simplest known “lifeforms”.


Sign in / Sign up

Export Citation Format

Share Document