scholarly journals Nuclear pseudogenes of mtDNA (NUMTS) suggest repeated distant inter-species hybridization among direct human ancestors

Author(s):  
Konstantin Gunbin ◽  
Konstantin Popadin ◽  
Leonid Peshkin ◽  
Sofia Annis ◽  
Zoe Fleischmann ◽  
...  

Introduction: Increasingly, the emergence and evolution of our species is being tied to genetic exchange between divergent lineages within ~1Ma (e.g., Neanderthals, Denisovans). However, little is known about genetic exchange during earlier (pre-1Ma) human evolution and between more divergent lineages. Results: We present evidence of hybridization within human lineage, show that it likely happened between highly divergent (~4.5My) lineages, more than once. We use analysis of nuclear pseudogenes of mtDNA (“NUMTs”). NUMTs are considered “mtDNA fossils”, as they preserve sequences of ancient mtDNA because mutational rate in the nucleus is much lower than in mtDNA. We demonstrate that a NUMT on human chromosome 5, which is shared by chimpanzee and gorilla, had descended from a mitochondrial genome that had been divergent from our ancestor’s mtDNA by ~4.5% at the time of pseudogene insertion. This implies that this pseudogene should have been inserted in a hominid that at that time had been diverged by about 4.5My of evolution from the hominid that at that time carried our mtDNA lineage. In order for this pseudogene and our mtDNA to end up in the same body, these two hominids should have mated with each other. The large divergence implies a distant interspecies (or even inter-generic) hybridization. Additionally, analysis of two other NUMTs (on Chr11 and Chr7) suggests that hybridization events occurred repeatedly. To exclude the large ancestral population size effect we show that mtDNA divergence in extant ape populations does not depend on population size. Discussion: It is thought that within mammals, it takes ~2-4My to establish reproductive isolation. However, fertile inter-generic hybrids have been documented among several primates, separated by ca. 4My. Very recently, hybridization between Colobine genera separated by ~5 My was reported to involve a NUMT scenario similar to what we had proposed human ancestors. Interestingly, phylogenic analysis consistently places the chr5 NUMT insertion around the time of the Homo/Pan split. Intriguingly, certain hominin fossils of that epoch have been interpreted alternately as more human-like or more ape-like. Such morphological mosaicisity could potentially be explained by hybridization. Fixation of NUMTs in question within population should have been rather efficient, since these pseudogenes appear to have been fixed in more than one population. Thus their spread across populations might have been driven by selection. Indeed, NUMTs on chr5 and chr11 are located in 3’ regions of functional genes. Most intriguingly, Ps11 is located 3’ to the RNF141/ZNF230 gene, essential for spermatogenesis. NUMT might have served as an expression modifier for RNF141, resulting in reproductive advantage. Indeed, RNF141 demonstrates selectively driven expression shift in testis of the ancestor of hominines.

2017 ◽  
Author(s):  
Konstantin Gunbin ◽  
Konstantin Popadin ◽  
Leonid Peshkin ◽  
Sofia Annis ◽  
Zoe Fleischmann ◽  
...  

Introduction: Increasingly, the emergence and evolution of our species is being tied to genetic exchange between divergent lineages within ~1Ma (e.g., Neanderthals, Denisovans). However, little is known about genetic exchange during earlier (pre-1Ma) human evolution and between more divergent lineages. Results: We present evidence of hybridization within human lineage, show that it likely happened between highly divergent (~4.5My) lineages, more than once. We use analysis of nuclear pseudogenes of mtDNA (“NUMTs”). NUMTs are considered “mtDNA fossils”, as they preserve sequences of ancient mtDNA because mutational rate in the nucleus is much lower than in mtDNA. We demonstrate that a NUMT on human chromosome 5, which is shared by chimpanzee and gorilla, had descended from a mitochondrial genome that had been divergent from our ancestor’s mtDNA by ~4.5% at the time of pseudogene insertion. This implies that this pseudogene should have been inserted in a hominid that at that time had been diverged by about 4.5My of evolution from the hominid that at that time carried our mtDNA lineage. In order for this pseudogene and our mtDNA to end up in the same body, these two hominids should have mated with each other. The large divergence implies a distant interspecies (or even inter-generic) hybridization. Additionally, analysis of two other NUMTs (on Chr11 and Chr7) suggests that hybridization events occurred repeatedly. To exclude the large ancestral population size effect we show that mtDNA divergence in extant ape populations does not depend on population size. Discussion: It is thought that within mammals, it takes ~2-4My to establish reproductive isolation. However, fertile inter-generic hybrids have been documented among several primates, separated by ca. 4My. Very recently, hybridization between Colobine genera separated by ~5 My was reported to involve a NUMT scenario similar to what we had proposed human ancestors. Interestingly, phylogenic analysis consistently places the chr5 NUMT insertion around the time of the Homo/Pan split. Intriguingly, certain hominin fossils of that epoch have been interpreted alternately as more human-like or more ape-like. Such morphological mosaicisity could potentially be explained by hybridization. Fixation of NUMTs in question within population should have been rather efficient, since these pseudogenes appear to have been fixed in more than one population. Thus their spread across populations might have been driven by selection. Indeed, NUMTs on chr5 and chr11 are located in 3’ regions of functional genes. Most intriguingly, Ps11 is located 3’ to the RNF141/ZNF230 gene, essential for spermatogenesis. NUMT might have served as an expression modifier for RNF141, resulting in reproductive advantage. Indeed, RNF141 demonstrates selectively driven expression shift in testis of the ancestor of hominines.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1459-1468 ◽  
Author(s):  
Carsten Wiuf ◽  
Jotun Hein

If homologous sequences in a population are not subject to recombination, they can all be traced back to one ancestral sequence. However, the rest of our genome is subject to recombination and will be spread out on a series of individuals. The distribution of ancestral material to an extant chromosome is here investigated by the coalescent with recombination, and the results are discussed relative to humans. In an ancestral population of actual size 1.3 million a minority of <6.4% will carry material ancestral to any present human. The estimated actual population size can be even higher, 5 million, reducing the percentage to 1.7%.


1997 ◽  
Vol 69 (2) ◽  
pp. 111-116 ◽  
Author(s):  
ZIHENG YANG

The theory developed by Takahata and colleagues for estimating the effective population size of ancestral species using homologous sequences from closely related extant species was extended to take account of variation of evolutionary rates among loci. Nuclear sequence data related to the evolution of modern humans were reanalysed and computer simulations were performed to examine the effect of rate variation on estimation of ancestral population sizes. It is found that the among-locus rate variation does not have a significant effect on estimation of the current population size when sequences from multiple loci are sampled from the same species, but does have a significant effect on estimation of the ancestral population size using sequences from different species. The effects of ancestral population size, species divergence time and among-locus rate variation are found to be highly correlated, and to achieve reliable estimates of the ancestral population size, effects of the other two factors should be estimated independently.


2020 ◽  
Vol 111 (6) ◽  
pp. 573-582
Author(s):  
Zachary B Hancock ◽  
Heath Blackmon

Abstract Isolation-by-distance is a widespread pattern in nature that describes the reduction of genetic correlation between subpopulations with increased geographic distance. In the population ancestral to modern sister species, this pattern may hypothetically inflate population divergence time estimation due to allele frequency differences in subpopulations at the ends of the ancestral population. In this study, we analyze the relationship between the time to the most recent common ancestor and the population divergence time when the ancestral population model is a linear stepping-stone. Using coalescent simulations, we compare the coalescent time to the population divergence time for various ratios of the divergence time over the population size. Next, we simulate whole genomes to obtain single nucleotide polymorphisms (SNPs), and use the Bayesian coalescent program SNAPP to estimate divergence times. We find that as the rate of migration between neighboring demes decreases, the coalescent time becomes significantly greater than the population divergence time when sampled from end demes. Divergence-time overestimation in SNAPP becomes severe when the divergence-to-population size ratio < 10 and migration is low. Finally, we demonstrate the impact of ancestral isolation-by-distance on divergence-time estimation using an empirical dataset of squamates (Tropidurus) endemic to Brazil. We conclude that studies estimating divergence times should be cognizant of the potential ancestral population structure in an explicitly spatial context or risk dramatically overestimating the timing of population splits.


2011 ◽  
Vol 20 (24) ◽  
pp. 5280-5294 ◽  
Author(s):  
TYLER S. ZEMLAK ◽  
SANDRA J. WALDE ◽  
EVELYN M. HABIT ◽  
DANIEL E. RUZZANTE

Heredity ◽  
2021 ◽  
Author(s):  
Armando Arredondo ◽  
Beatriz Mourato ◽  
Khoa Nguyen ◽  
Simon Boitard ◽  
Willy Rodríguez ◽  
...  

AbstractInferring the demographic history of species is one of the greatest challenges in populations genetics. This history is often represented as a history of size changes, ignoring population structure. Alternatively, when structure is assumed, it is defined a priori as a population tree and not inferred. Here we propose a framework based on the IICR (Inverse Instantaneous Coalescence Rate). The IICR can be estimated for a single diploid individual using the PSMC method of Li and Durbin (2011). For an isolated panmictic population, the IICR matches the population size history, and this is how the PSMC outputs are generally interpreted. However, it is increasingly acknowledged that the IICR is a function of the demographic model and sampling scheme with limited connection to population size changes. Our method fits observed IICR curves of diploid individuals with IICR curves obtained under piecewise stationary symmetrical island models. In our models we assume a fixed number of time periods during which gene flow is constant, but gene flow is allowed to change between time periods. We infer the number of islands, their sizes, the periods at which connectivity changes and the corresponding rates of connectivity. Validation with simulated data showed that the method can accurately recover most of the scenario parameters. Our application to a set of five human PSMCs yielded demographic histories that are in agreement with previous studies using similar methods and with recent research suggesting ancient human structure. They are in contrast with the view of human evolution consisting of one ancestral population branching into three large continental and panmictic populations with varying degrees of connectivity and no population structure within each continent.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 395-404 ◽  
Author(s):  
Jeffrey D Wall

Abstract This article presents a new method for jointly estimating species divergence times and ancestral population sizes. The method improves on previous ones by explicitly incorporating intragenic recombination, by utilizing orthologous sequence data from closely related species, and by using a maximum-likelihood framework. The latter allows for efficient use of the available information and provides a way of assessing how much confidence we should place in the estimates. I apply the method to recently collected intergenic sequence data from humans and the great apes. The results suggest that the human-chimpanzee ancestral population size was four to seven times larger than the current human effective population size and that the current human effective population size is slightly >10,000. These estimates are similar to previous ones, and they appear relatively insensitive to assumptions about the recombination rates or mutation rates across loci.


2013 ◽  
Author(s):  
Simon H. Martin ◽  
John W. Davey ◽  
Chris D. Jiggins

Several methods have been proposed to test for introgression across genomes. One method tests for a genome-wide excess of shared derived alleles between taxa using Patterson?s D statistic, but does not establish which loci show such an excess or whether the excess is due to introgression or ancestral population structure. Several recent studies have extended the use of D by applying the statistic to small genomic regions, rather than genome-wide. Here, we use simulations and whole genome data from Heliconius butterflies to investigate the behavior of D in small genomic regions. We find that D is unreliable in this situation as it gives inflated values when effective population size is low, causing D outliers to cluster in genomic regions of reduced diversity. As an alternative, we propose a related statistic f̂d, a modified version of a statistic originally developed to estimate the genome-wide fraction of admixture. f̂d is not subject to the same biases as D, and is better at identifying introgressed loci. Finally, we show that both D and f̂d outliers tend to cluster in regions of low absolute divergence (dXY), which can confound a recently proposed test for differentiating introgression from shared ancestral variation at individual loci.


Sign in / Sign up

Export Citation Format

Share Document