scholarly journals Overview of the Development of the Maritime Search and Rescue System in Croatia

2019 ◽  
Vol 31 (2) ◽  
pp. 205-212
Author(s):  
Dario Medić ◽  
Anita Gudelj ◽  
Natalija Kavran

According to the Convention for the Safety of Life at Sea and International Convention on Maritime Search and Rescue, saving human lives at sea is the duty of all signatory states. This paper analyzes and gives an overview of previous research activities in search and rescue system at sea and how the use of unmanned aerial vehicles (UAV) can improve search and rescue actions at sea. Research activities include development of the search system and placement of resources that are used in search and rescue actions (ships, planes etc.). Previous research is mainly related to minimizing response time when accidents at sea are detected in relation to search and rescue missions. Implementation of unmanned aerial vehicles into the search and rescue system enables improvement of these actions due to earlier detection and verification of accidents at sea and prevents unnecessary search and rescue units engagement in cases when an accident did not occur. The results of previous research point to the fact that future research should aim to explore the synthesis of unmanned aerial vehicles with the existing search and rescue system at sea in Croatia.

2013 ◽  
Vol 655-657 ◽  
pp. 1077-1085 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

Human body detection is a fundamental research problem where computer vision could be applied. This research area has wide applications including surveillance, search and rescue missions. Building an effective human body detector framework under wide ranges of weather, lighting and environmental conditions is a challenge task. A variety of sensors and optimisation algorithms are proposed. This paper aims to review the human body detection methodology conducted by the Unmanned Aerial Vehicles (UAV), and the future research for the UAV search and rescue applications.


Author(s):  
S. Sakthi Anand ◽  
R. Mathiyazaghan

<p class="Default">Unmanned Aerial Vehicles have gained well known attention in recent years for a numerous applications such as military, civilian surveillance operations as well as search and rescue missions. The UAVs are not controlled by professional pilots and users have less aviation experience. Therefore it seems to be purposeful to simplify the process of aircraft controlling. The objective is to design, fabricate and implement an unmanned aerial vehicle which is controlled by means of voice recognition. In the proposed system, voice commands are given to the quadcopter to control it autonomously. This system is navigated by the voice input. The control system responds to the voice input by voice recognition process and corresponding algorithms make the motors to run at specified speeds which controls the direction of the quadcopter.</p>


2021 ◽  
Author(s):  
Massimo Micieli ◽  
Gianluca Botter ◽  
Giuseppe Mendicino ◽  
Alfonso Senatore

&lt;p&gt;UAVs (Unmanned Aerial Vehicles) are increasingly used for monitoring river networks with a broad range of purposes. In this contribution, we focus on the use of multispectral sensors, either in the thermal infrared band LWIR (Long-wavelength infrared, 8-15 &amp;#181;m) or in the infrared band NIR (Near-infrared, 0.75-1.4 &amp;#181;m) to map network dynamics in temporary streams. Specifically, we discuss the first results of a set of surveys carried out in 2020 within a small river catchment located in northern Calabria (southern Italy), as part of the research activities of the ERC-funded DyNET project. Preliminary, a rigorous methodology was identified to perform on-site surveys and to process and analyse the acquired images. Experimental results show that the combined use of LWIR and NIR sensors is a suitable solution for detecting water presence in channels characterized by different hydraulic and morphologic conditions. LWIR sensors alone allow one to discriminate water presence only when the thermal contrast with the surrounding environment is high. On the other hand, NIR sensors permit to detect the presence of water in most of the analyzed settings through the estimate of the Normalized Difference Water Index (NDWI). However, NIR sensors can be misled in case of shallow water depth, due to the NIR radiation emitted by the riverbed merging with that of the water. Overall, the study demonstrates that a combined LWIR/NIR approach allows addressing a broader range of conditions. Moreover, the information provided can be further enhanced by combining it with geomorphologic information and basic hydraulic concepts.&lt;/p&gt;


Author(s):  
lamia Chaari Fourati ◽  
Mohamed Fourati ◽  
Bilel Najeh ◽  
Aicha Idriss

During this last decade, the blockchain (BC) paradigm has been required in several use cases and scenarios in particular for security, privacy, and trust provisioning. Accordingly, several studies proposed the use of BC technology to secure and to assure the trustworthiness of unmanned aerial vehicles (UAVs). In this context, this chapter highlights several applications and scenarios for the deployment of UAVs within diverse smart systems. In addition, it illustrates the advantages of the integration of the BC within UAVs-based smart systems. This integration reveals new challenges and future research directions that are discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document