Electromagnetic Interference Shielding Effectiveness and Thermal Properties of Silicone Rubber Composites Filled with Ferric Oxides

Polymer Korea ◽  
2021 ◽  
Vol 45 (2) ◽  
pp. 200-209
Author(s):  
Sosan Hwang ◽  
Hyeon Woo Jeong ◽  
Yongha Kim ◽  
Yingjie Qian ◽  
Sung Hoon Jin ◽  
...  
2011 ◽  
Vol 110-116 ◽  
pp. 1392-1396 ◽  
Author(s):  
Yong Jun Hu ◽  
Hai Yan Zhang ◽  
Xiao Ting Xiao ◽  
Feng Li ◽  
Xiao Ling Cheng ◽  
...  

In this paper, the silicone rubber composed of carbon fibers was prepared. The influence of different concentration of carbon fibers on the conductivity, electromagnetic shielding interference effectiveness property of the silicone rubber was discussed from the point of view of condition of carbon fiber and silicone rubber. The results showed that there existed the extreme conductivity and shielding effectiveness (SE) across the tested frequency range from 2.6 GHz to 3.95 GHz of silicone rubber composites filled with carbon fibers. When the content of the carbon fibbers was 50 parts per hundred of rubber (phr), the SE values of composites were typically above 63 dB and close to the extremum. The compact packing structure of carbon fibers does not play an important role in improved the conductivity of composite. The SE of the composite depends on the conductivity of composite.


2021 ◽  
pp. 095400832110645
Author(s):  
Karim Benzaoui ◽  
Achour Ales ◽  
Ahmed Mekki ◽  
Abdelhalim Zaoui ◽  
Boudjemaa Bouaouina ◽  
...  

The conventional electromagnetic interference (EMI) shielding materials are being gradually replaced by a new generation of supported conducting polymer composites (CPC) films due to their many advantages. This work presents a contribution on the effects of silane surface–modified flexible polypyrrole-silver nanocomposite films on the electromagnetic interference shielding effectiveness (EMI-SE). Thus, the UV-polymerization was used to in-situ deposit the PPy-Ag on the biaxial oriented polyethylene terephthalate (BOPET) flexible substrates whose surfaces were treated by 3-aminopropyltrimethoxysilane (APTMS). X-ray Photoelectron Spectroscopy (XPS) analyzes confirmed the APTMS grafting procedure. Structural, morphological, thermal, and electrical characteristics of the prepared films were correlated to the effect of substrate surface treatment. Thereafter, EMI-SE measurements of the elaborated films were carried out as per ASTM D4935 standard for a wide frequency band extending from 50 MHz to 18 GHz. The obtained results confirmed that the APTMS-treated BOPET film exhibit higher EMI shielding performance and better electrical characteristics compared to the untreated film. In fact, a 32% enhancement of EMI-SE was noted for the treated films compared to the untreated ones. Overall, these results put forward the role played by the surface treatment in strengthening the position of flexible PPy-Ag supported films as high-performance materials in electronic devices and electromagnetic interference shielding applications.


Sign in / Sign up

Export Citation Format

Share Document