scholarly journals Structure and function of aconitase enzyme in TCA by estimating optical rotation of glucose and determining the relationship between cell density and absorbance

2017 ◽  
Vol 3 (10) ◽  
pp. 121
Author(s):  
Shahid Raza ◽  
Ayesha Ameen

Enzyme aconitase have a great value in TCA path, this enzyme use to convert pyruvate and acetyl co A in to citrate and cis aconitase ( a six carbon molecule). This study was designed to find the tertiary structure of aconitase with and without ligand by using RSBC. The TCA cycle start with the pyruvate that is end product of glycolysis cycle. This study also focused on the optical rotation of glucose molecule before its breakdown start naturally through glycolysis and absorbance / transmittance of viable cells would be estimated.

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Rui Zhang ◽  
Weiyong Shen ◽  
Jianhai Du ◽  
Mark C. Gillies

Abstract Photoreceptors, the primary site of phototransduction in the retina, require energy and metabolites to constantly renew their outer segments. They preferentially consume most glucose through aerobic glycolysis despite possessing abundant mitochondria and enzymes for oxidative phosphorylation (OXPHOS). Exactly how photoreceptors balance aerobic glycolysis and mitochondrial OXPHOS to regulate their survival is still unclear. We crossed rhodopsin-Cre mice with hexokinase 2 (HK2)-floxed mice to study the effect of knocking down HK2, the first rate-limiting enzyme in glycolysis, on retinal health and metabolic remodeling. Immunohistochemistry and Western blots were performed to study changes in photoreceptor-specific proteins and key enzymes in glycolysis and the tricarboxylic acid (TCA) cycle. Changes in retinal structure and function were studied by optical coherence tomography and electroretinography. Mass spectrometry was performed to profile changes in 13C-glucose-derived metabolites in glycolysis and the TCA cycle. We found that knocking down HK2 in rods led to age-related photoreceptor degeneration, evidenced by reduced expression of photoreceptor-specific proteins, age-related reductions of the outer nuclear layer, photoreceptor inner and outer segments and impaired electroretinographic responses. Loss of HK2 in rods led to upregulation of HK1, phosphorylation of pyruvate kinase muscle isozyme 2, mitochondrial stress proteins and enzymes in the TCA cycle. Mass spectrometry found that the deletion of HK2 in rods resulted in accumulation of 13C-glucose along with decreased pyruvate and increased metabolites in the TCA cycle. Our data suggest that HK2-mediated aerobic glycolysis is indispensable for the maintenance of photoreceptor structure and function and that long-term inhibition of glycolysis leads to photoreceptor degeneration.


Author(s):  
Gianmarco Secco ◽  
◽  
Marzia Delorenzo ◽  
Francesco Salinaro ◽  
Caterina Zattera ◽  
...  

AbstractBedside lung ultrasound (LUS) can play a role in the setting of the SarsCoV2 pneumonia pandemic. To evaluate the clinical and LUS features of COVID-19 in the ED and their potential prognostic role, a cohort of laboratory-confirmed COVID-19 patients underwent LUS upon admission in the ED. LUS score was derived from 12 fields. A prevalent LUS pattern was assigned depending on the presence of interstitial syndrome only (Interstitial Pattern), or evidence of subpleural consolidations in at least two fields (Consolidation Pattern). The endpoint was 30-day mortality. The relationship between hemogasanalysis parameters and LUS score was also evaluated. Out of 312 patients, only 36 (11.5%) did not present lung involvment, as defined by LUS score < 1. The majority of patients were admitted either in a general ward (53.8%) or in intensive care unit (9.6%), whereas 106 patients (33.9%) were discharged from the ED. In-hospital mortality was 25.3%, and 30-day survival was 67.6%. A LUS score > 13 had a 77.2% sensitivity and a 71.5% specificity (AUC 0.814; p < 0.001) in predicting mortality. LUS alterations were more frequent (64%) in the posterior lower fields. LUS score was related with P/F (R2 0.68; p < 0.0001) and P/F at FiO2 = 21% (R2 0.59; p < 0.0001). The correlation between LUS score and P/F was not influenced by the prevalent ultrasound pattern. LUS represents an effective tool in both defining diagnosis and stratifying prognosis of COVID-19 pneumonia. The correlation between LUS and hemogasanalysis parameters underscores its role in evaluating lung structure and function.


2018 ◽  
Vol 66 ◽  
pp. S260
Author(s):  
A.R. Carter ◽  
D.L. Santos Ferreira ◽  
A. Taylor ◽  
N. Chaturvedi ◽  
A.D. Hughes ◽  
...  

Author(s):  
Lorenza González-Mariscal ◽  
Antonia Avila ◽  
Abigail Betanzos

Open Heart ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. e000831 ◽  
Author(s):  
Melissa Suzanne Burroughs Peña ◽  
Katrina Swett ◽  
Robert C Kaplan ◽  
Krista Perreira ◽  
Martha Daviglus ◽  
...  

ObjectiveTo describe the relationship of household secondhand smoke (SHS) exposure and cardiac structure and function.MethodsParticipants (n=1069; 68 % female; age 45–74 years) without history of tobacco use, coronary artery disease or severe valvular disease were included. Past childhood (starting at age <13 years), adolescent/adult and current exposure to household SHS was assessed. Survey linear regression analyses were used to model the relationship of SHS exposure and echocardiographic measures of cardiac structure and function, adjusting for covariates (age, sex, study site, alcohol use, physical activity and education).ResultsSHS exposure in childhood only was associated with reduced E/A velocity ratio (β=−0.06 (SE 0.02), p=0.008). SHS exposure in adolescence/adult only was associated with increased left ventricular ejection fraction (LVEF) (1.2 (0.6), p=0.04), left atrial volume index (1.7 (0.8), p=0.04) and decreased isovolumic relaxation time (−0.003 (0.002), p=0.03). SHS exposure in childhood and adolescence/adult was associated with worse left ventricular global longitudinal strain (LVGLS) (two-chamber) (0.8 (0.4), p= 0.049). Compared with individuals who do not live with a tobacco smoker, individuals who currently live with at least one tobacco smoker had reduced LVEF (−1.4 (0.6), p=0.02), LVGLS (average) (0.9 (0.40), p=0.03), medial E′ velocity (−0.5 (0.2), p=0.01), E/A ratio (−0.09 (0.03), p=0.003) and right ventricular fractional area change (−0.02 (0.01), p=0.01) with increased isovolumic relaxation time (0.006 (0.003), p=0.04).ConclusionsPast and current household exposure to SHS was associated with abnormalities in cardiac systolic and diastolic function. Reducing household SHS exposure may be an opportunity for cardiac dysfunction prevention to reduce the risk of future clinical heart failure.


Author(s):  
Mark Lorch

This chapter examines proteins, the dominant proportion of cellular machinery, and the relationship between protein structure and function. The multitude of biological processes needed to keep cells functioning are managed in the organism or cell by a massive cohort of proteins, together known as the proteome. The twenty amino acids that make up the bulk of proteins produce the vast array of protein structures. However, amino acids alone do not provide quite enough chemical variety to complete all of the biochemical activity of a cell, so the chapter also explores post-translation modifications. It finishes by looking as some dynamic aspects of proteins, including enzyme kinetics and the protein folding problem.


Sign in / Sign up

Export Citation Format

Share Document