A Novel Method of Modeling of Fundamental Properties of Materials

Author(s):  
V. Ginzburg
2017 ◽  
Vol 734 ◽  
pp. 206-211 ◽  
Author(s):  
Zhuang Jin ◽  
Jian Ping Zhao

Cao and Lu had built a method to acquire the properties of materials. But they neglected the influence of strain hardening exponent n by introducing the representative strain which didan’t have any physical meaning. A new method from a continuous spherical indentation test was built, the influence of strain hardening exponent n were considered and the formulas of dimensionless functions defined in their work were improved in this present paper. Then the computational results from the new method and the actual results were compared and the error is about 8%.


2013 ◽  
Vol 2 (2) ◽  
pp. 171-199 ◽  
Author(s):  
Daniel P. Otto ◽  
Melgardt M. de Villiers

AbstractNanoscience studies describe natural phenomena at the submicron scale. Below a critical nanoscale limit, the physical, chemical, and biological properties of materials show a marked departure in their behavior compared to the bulk. At the nanoscale, energy conversion is dominated by phonons, whereas at larger scales, electrons determine the process. The surface-to-volume ratio at the nanoscale is immense, and interfacial interactions are markedly more important than at the macroscopic level, where the majority of the material is shielded from the surface. These properties render the nanoparticles to be significantly different from their larger counterparts. Nano-enabled drug delivery systems have resulted from multidisciplinary cooperation aimed at improving drug delivery. Significant improvements in the thermodynamic and delivery properties are seen due to nanotechnology. Hybrid nanodelivery systems, i.e., membranes with nanopores that can gate stimuli-responsive drug release could be a future development. Nanotechnology will improve current drug delivery and create novel future delivery systems. The fundamental properties and challenges of nanodelivery systems are discussed in this review.


Optik ◽  
2013 ◽  
Vol 124 (20) ◽  
pp. 4085-4088 ◽  
Author(s):  
Wei-en Lai ◽  
Huai-wu Zhang ◽  
Yao-hua Zhu ◽  
Qi-ye Wen

2017 ◽  
Vol 12 (6) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Annalisa Dalmoro ◽  
Sara Cascone ◽  
Gaetano Lamberti ◽  
Anna Angela Barba

This mini-review is focused on an engineering approach to produce polysaccharides-based microparticles for nutraceutical and pharmaceutical purposes. A brief introduction about the fundamental properties of polysaccharides and their use as microsystems in food, cosmetics, and pharmaceutics, and a summary of the most important methods of preparation are described. Then, a novel method based on the ultrasonic atomization of solutions of the two most used polysaccharides, alginate and chitosan, followed by ionotropic gelation to produce enteric microsystems for oral administration and, in particular, the basic mechanisms of the encapsulation of molecules with different size and hydrophilicity, are investigated. This mini-review will show therefore the pathway to correctly design a polysaccharide microcarrier for the encapsulation of active molecules with different properties: from the choice of materials features, to the selection and the optimization of production methods with the aim to reduce costs and energy (ionotropic gelation coupled to ultrasonic atomization), to the control of the final carrier size (by purposely developed predictive models), at last to the optimization of encapsulation properties (predicting by model the drug leakage and providing different solutions to avoid it).


Sign in / Sign up

Export Citation Format

Share Document