Effect of Ultrasonic-Assisted Two-Point Incremental Sheet Forming (UA-TPIF) on Surface Finish

Author(s):  
A. Bansal ◽  
R. Cheng ◽  
X. Liu ◽  
A. Taub
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1188
Author(s):  
Tomasz Trzepieciński ◽  
Valentin Oleksik ◽  
Tomaž Pepelnjak ◽  
Sherwan Mohammed Najm ◽  
Imre Paniti ◽  
...  

Lightweight materials, such as titanium alloys, magnesium alloys, and aluminium alloys, are characterised by unusual combinations of high strength, corrosion resistance, and low weight. However, some of the grades of these alloys exhibit poor formability at room temperature, which limits their application in sheet metal-forming processes. Lightweight materials are used extensively in the automobile and aerospace industries, leading to increasing demands for advanced forming technologies. This article presents a brief overview of state-of-the-art methods of incremental sheet forming (ISF) for lightweight materials with a special emphasis on the research published in 2015–2021. First, a review of the incremental forming method is provided. Next, the effect of the process conditions (i.e., forming tool, forming path, forming parameters) on the surface finish of drawpieces, geometric accuracy, and process formability of the sheet metals in conventional ISF and thermally-assisted ISF variants are considered. Special attention is given to a review of the effects of contact conditions between the tool and sheet metal on material deformation. The previous publications related to emerging incremental forming technologies, i.e., laser-assisted ISF, water jet ISF, electrically-assisted ISF and ultrasonic-assisted ISF, are also reviewed. The paper seeks to guide and inspire researchers by identifying the current development trends of the valuable contributions made in the field of SPIF of lightweight metallic materials.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1217
Author(s):  
Yujing Sun ◽  
Zhenyun Lu ◽  
Chao Li ◽  
Rongtao Wang ◽  
Weidong Zhai

The effect of ultrasonic vibration on the springback effect and surface property for ultrasonic-assisted incremental sheet forming of aluminum alloy were discussed. A series of experiments were established to explore the ultrasonic vibration on the surface property and springback effect of symmetrical aluminum alloy sheet in order to facilitate analysis of experimental results. It is obtained that the application of ultrasonic vibration can reduce the springback effect. The surface waviness feature aluminum alloy becomes weaker with the continuous increase of ultrasonic amplitude and the surface topography tends to be smoother. In addition, the application of ultrasonic vibration can reduce the surface hardness and promote the surface residual stress distribution to be more uniform. The findings provide an experimental basis for further investigation of the mechanisms of the ultrasonic-assisted incremental sheet forming process.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1862
Author(s):  
Harshal Y. Shahare ◽  
Abhay Kumar Dubey ◽  
Pavan Kumar ◽  
Hailiang Yu ◽  
Alexander Pesin ◽  
...  

Incremental Sheet Forming (ISF) is emerging as one of the popular dieless forming processes for the small-sized batch production of sheet metal components. However, the parts formed by the ISF process suffer from poor surface finish, geometric inaccuracy, and non-uniform thinning, which leads to poor part characteristics. Hammering, on the other hand, plays an important role in relieving residual stresses, and thus enhances the material properties through a change in grain structure. A few studies based on shot peening, one of the types of hammering operation, revealed that shot peening can produce nanostructure surfaces with different characteristics. This paper introduces a novel process, named the Incremental Sheet Hammering (ISH) process, i.e., integration of incremental sheet forming (ISF) process and hammering to improve the efficacy of the ISF process. Controlled hammering in the ISF process causes an alternating motion at the tool-sheet interface in the local deformation zone. This motion leads to enhanced material flow and subsequent improvement in the surface finish. Typical toolpath strategies are incorporated to impart the tool movement. The mechanics of the process is further explored through explicit-dynamic numerical models and experimental investigations on 1 mm thick AA1050 sheets. The varying wall angle truncated cone (VWATC) and constant wall angle truncated cone (CWATC) test geometries are identified to compare the ISF and ISH processes. The results indicate that the formability is improved in terms of wall angle, forming depth and forming limits. Further, ISF and ISH processes are compared based on the numerical and experimental results. The indicative statistical analysis is performed which shows that the ISH process would lead to an overall 10.99% improvement in the quality of the parts primarily in the surface finish and forming forces.


Author(s):  
Pavan Kumar ◽  
Satwik Priyadarshi ◽  
J. J. Roy ◽  
M. K. Samal ◽  
P. K. Jain ◽  
...  

This work explores the effect of tool geometry on surface finish in incremental sheet forming (ISF) process. In the present work, two different tool geometries i.e. hemispherical shaped tool and ellipsoidal shaped tool are considered. Area at tool-sheet contact and scallop height were calculated for both the tool geometries. To assess the effect of tool geometry on the surface finish of the formed components, both analytical and experimental approaches have been used. A test geometry having the shape of frustum of pyramid was considered for the proposed investigation and four surface roughness parameters i.e. arithmetic mean surface roughness (Ra), root mean square surface roughness (Rq), maximum peak-to-valley height (Rt) and average peak-to-valley height (Rz) have been selected as response parameters. Based on the analytical model and experimental investigations, both qualitative and quantitative comparisons had been made among the effects of hemispherical and ellipsoidal tool geometries on surface finish. The investigation deduces that better surface finish of the formed component can be achieved by using ellipsoidal shaped tool rather than the hemispherical shaped tool.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


Sign in / Sign up

Export Citation Format

Share Document