scholarly journals Comparison of Concrete and Steel Jacket Methods for Reinforcing A Concrete Bridge Pier by Numerical and Experimental Studies

2021 ◽  
Vol 25 (2) ◽  
pp. 63
Author(s):  
Hadi Faghihmaleki
2012 ◽  
Vol 204-208 ◽  
pp. 2045-2050 ◽  
Author(s):  
Pei Song Gong ◽  
Bo Chen ◽  
Chun Fang Song ◽  
Xiu Li Li

The time-varying thermal stresses of a concrete pier are actively studied in this study with the aiding of the commercial package ANSYS. Thermal boundary conditions are utilized to obtain the temperature distribution of the concrete bridge pier. The surface temperature of the pier is measured by using a thermal infrared imager at different time instants. The different boundary conditions are applied to determine the structural temperature distribution and compute the thermal deformation. The made observations demonstrate that the horizontal deformation is much larger than that in vertical deformation due to the influence of the constraints on the top and bottom sides of the pier. The thermal stresses of the example bridge pier are not very large except for the local areas on top of the piers. It is seen that the numerical models can successfully predict the structural time-varying temperature effects


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Wang Hui-li ◽  
Feng Guang-qi ◽  
Qin Si-feng

The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier’s hysteresis loop “pinching effect,” smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.


Sign in / Sign up

Export Citation Format

Share Document