scholarly journals Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump

2013 ◽  
Vol 21 (5) ◽  
pp. 67-73 ◽  
Author(s):  
Yunsub Sin ◽  
Geesoo Lee ◽  
Hyunchul Kim ◽  
Soo-Jin Jeong ◽  
Kyungyeong Park ◽  
...  
2016 ◽  
Author(s):  
Joseph Bagal ◽  
Maximilien Hallaire ◽  
Paul Hazel

ABSTRACT This paper presents the development, qualification and field trial of a novel well flow valve that delivers unlimited zonal selectivity in single skin lower completion without the use of control lines. Control lines have limitations and risks due to complexity during deployment, restrictions on the number of zones, complications with liner hanger feed thru and associated wet connects. It is desirable to remove the control lines whilst maintaining the functionality of multi zone, variable choke flow control. The well flow valve is a full-bore, reliable and robust mechanically operated sleeve, qualified in accordance with ISO14998 including multiple open/close cycles, at a sustained unloading pressure of 1,500 psi, with highly customizable flow ports. The need for such a solution was identified by an operator in West Africa. The well objective was elevated from a gas producer to a well that required the flexibility to produce gas or oil with gas lift capability. The well flow valve was selected and required on site variable choke capability for both oil and gas production, with choke position verification, ability to handle dirty gas production without risk of plugging, compliant with a high rate and high pressure proppant frac along with ease of operation and long term reliability. The field trial included a high pressure proppant frac in the oil zone. In the shallower gas zone, three well flow valves were used to deliver variable choking capability from maximum gas flow rate with minimal delta P adjusting down to a choke size suitable for gas lift. The well flow valves were operated using a high expansion shifting key conveyed on eline through the 3 ½" production tubing. The shifting key expanded in the 4 ½" lower completion to open/close individually all the well flow valves in a single trip. Incorporating this new product overcame the challenges presented and met the objective of commingled production of oil and gas. The well flow control valve demonstrated flexibility through design, supply chain, manufacturing, and operations. This paper will also outline the future road map covering further developments of the well flow valve and its incorporation into an enhanced flexible lower liner solution aimed at lowering well completion costs and risks.


Author(s):  
Hikaru YAMAMOTO ◽  
Kou HASHIMOTO ◽  
Takefumi KANDA ◽  
Shuichi WAKIMOTO ◽  
Norihisa SENO ◽  
...  

Author(s):  
Yang Yang ◽  
Yongjian Zhao ◽  
Songyi Zhong ◽  
Yan Peng ◽  
Yi Yang ◽  
...  

2003 ◽  
Vol 36 (5) ◽  
pp. 861-866 ◽  
Author(s):  
A. Marciniak ◽  
C.D. Bocăială ◽  
R. Louro ◽  
J. Sa da Costa ◽  
J. Korbicz

2011 ◽  
Vol 171 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Daisuke Hirooka ◽  
Koichi Suzumori ◽  
Takefumi Kanda

2021 ◽  
Author(s):  
Bo Wang ◽  
Yunwei Li ◽  
Long Quan ◽  
Lianpeng Xia

Abstract There are the problems in the traditional pressure-compensation flow-control valve, such as low flow control accuracy, small flow control difficulty, and limited flow range. For this, a method of continuous control pressure drop Δprated (i.e. the pressure drop across the main throttling orifice) to control flow-control valve flow is proposed. The precise control of small flow is realized by reducing the pressure drop Δprated and the flow range is amplified by increasing pressure drop Δprated. At the same time, it can also compensate the flow force to improve the flow control accuracy by regulating the pressure drop Δprated. In the research, the flow-control valve with controllable pressure compensation capability (FVCP) was designed firstly and theoretically analyzed. Then the sub-model model of PPRV and the joint simulation model of the FVCP were established and verified through experiments. Finally, the continuous control characteristics of pressure drop Δprated, the flow characteristics, and flow force compensation were studied. The research results demonstrate that, compared with the traditional flow-control valve, the designed FVCP can adjust the compensation pressure difference in the range of 0∼3.4 MPa in real-time. And the flow rate can be altered within the range of 44%∼136% of the rated flow. By adjusting the compensation pressure difference to compensate the flow force, the flow control accuracy of the multi-way valve is improved, and the flow force compensation effect is obvious.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 3053-3061
Author(s):  
Linfeng Zhang ◽  
Dongsheng He ◽  
Ya Tan ◽  
Liangbin Xu

The K-shaped seal assembly is composed of K-shaped metal seal, high temperature nickel base alloy (GH4169). Its sealing performance directly affects the reliability and stability of flow control system. The 2-D axisymmetric K-shaped metal seal is abstracted as the combination of interference fit model and cantilever beam model. Considering the influence of temperature on the seal, based on the 2-D constitutive relation of elastic medium and heat conduction theory, the theoretical model between contact stress and self variation of K-shaped metal seal ring is deduced by using inverse method. Using ABAQUS thermal structure coupling analysis method, the thermal mechanical coupling finite element model of K-shaped seal assembly is established. The theoretical analytical solution proposed in this paper can be used to calculate the approximate solution of contact stress of radial metal seal under current oilfield conditions, and provides theoretical support for the numerical calculation of thermal stress of radial metal seal.


The main aim of our project is to design and fabrication of pneumatic two step speed control of a cylinder. Initially the flow from the FRL retracts the cylinder when the push button is in its spring offset position. When it is pushed the flow pilots actuate. The air passes through the flow control and shuttle valve. Then the cylinder extends with high speed as the valve allows more air to enter the cylinder. When the piston reaches the position it operates the cam push button and pilot air flow through this and actuate 5/2 pilot operated valve and reaches flow control valve which permits less air. Then the flow through enters the shuttle valve to cylinder and allows the cylinder to extend at relatively low speed. At the end of extension stroke deactivating push button retracts the cylinder. Thus the speed of cylinder is controlled and project can be achieved


Sign in / Sign up

Export Citation Format

Share Document