Novel Well Flow-Control Valve for Flexible Well Completion and Application in Commingled Production of Oil and Gas in West Africa

2016 ◽  
Author(s):  
Joseph Bagal ◽  
Maximilien Hallaire ◽  
Paul Hazel

ABSTRACT This paper presents the development, qualification and field trial of a novel well flow valve that delivers unlimited zonal selectivity in single skin lower completion without the use of control lines. Control lines have limitations and risks due to complexity during deployment, restrictions on the number of zones, complications with liner hanger feed thru and associated wet connects. It is desirable to remove the control lines whilst maintaining the functionality of multi zone, variable choke flow control. The well flow valve is a full-bore, reliable and robust mechanically operated sleeve, qualified in accordance with ISO14998 including multiple open/close cycles, at a sustained unloading pressure of 1,500 psi, with highly customizable flow ports. The need for such a solution was identified by an operator in West Africa. The well objective was elevated from a gas producer to a well that required the flexibility to produce gas or oil with gas lift capability. The well flow valve was selected and required on site variable choke capability for both oil and gas production, with choke position verification, ability to handle dirty gas production without risk of plugging, compliant with a high rate and high pressure proppant frac along with ease of operation and long term reliability. The field trial included a high pressure proppant frac in the oil zone. In the shallower gas zone, three well flow valves were used to deliver variable choking capability from maximum gas flow rate with minimal delta P adjusting down to a choke size suitable for gas lift. The well flow valves were operated using a high expansion shifting key conveyed on eline through the 3 ½" production tubing. The shifting key expanded in the 4 ½" lower completion to open/close individually all the well flow valves in a single trip. Incorporating this new product overcame the challenges presented and met the objective of commingled production of oil and gas. The well flow control valve demonstrated flexibility through design, supply chain, manufacturing, and operations. This paper will also outline the future road map covering further developments of the well flow valve and its incorporation into an enhanced flexible lower liner solution aimed at lowering well completion costs and risks.

2021 ◽  
Author(s):  
Kabir Hasan Yar'Adua ◽  
Idoko Job John ◽  
Abubakar Jibril Abbas ◽  
Salihu M. Suleiman ◽  
Abdullahi A. Ahmadu ◽  
...  

Abstract Despite the recent wide embrace of mechanical descaling approaches for cleaning scales in petroleum production tubings and similar conduits with the use of high-pressure (HP) water jets, the process is still associated with downhole backpressure and well integrity challenges. While the introduction of sterling beads to replace sand particles in the water recorded high successes in maintaining well completion integrity after scale removal in some recent applications of this technique, it is, unfortunately, still not without questions of environmental degradation. Furthermore, the single nozzle, solids-free, aerated jetting descaling technique – recently published widely – is categorized with low scale surface area of contact, low descaling efficiency and subsequent high descaling rig time. The modifications to mechanical descaling techniques proposed in this work involve the use of three high-pressure flat fan nozzles of varying nozzles arrangements, standoff distances and injection pressures to remove soft scale deposits in oil and gas production tubings and similar circular conduits. This experiment provides further insights into the removal of paraffin scales of various shapes at different descaling conditions of injection pressures, stand-off distances and nozzle arrangements with the use of freshwater. The results obtained from this study also show consistency with findings from earlier works on the same subject.


2017 ◽  
Vol 868 ◽  
pp. 75-80
Author(s):  
Ya Jun Liu ◽  
Shu Yan Zhan ◽  
Jia Kun Ye ◽  
Wen Hua Xie

The dispenser is a fuel pumping and measurement device used in the service station. During the refueling process of volatile liquid, the cavitation phenomenon occur easily due to the large flow rate. The serious cavitation will not only reduce the pumping efficiency, produce loud work noise, but also aggravate the pollution of oil and gas and the energy consumption of the system. Therefore, it is necessary to control the maximum flow rate of the pump. Based on this problem, this paper firstly designs a new flow control valve, and a method of mathematical modeling is proposed to analyze the flow field distribution and the working principle of the whole device based on Euler equation and Bernoulli equation. Then we combine this new hydraulic device to the variable frequency dispenser, a new design of the dispenser structure and a control mode of the maximum flow are proposed. The theoretical research shows that the maximum flow can be limited by optimizing diameter ratio of that flow control valve.


2013 ◽  
Vol 21 (5) ◽  
pp. 67-73 ◽  
Author(s):  
Yunsub Sin ◽  
Geesoo Lee ◽  
Hyunchul Kim ◽  
Soo-Jin Jeong ◽  
Kyungyeong Park ◽  
...  

Author(s):  
Hikaru YAMAMOTO ◽  
Kou HASHIMOTO ◽  
Takefumi KANDA ◽  
Shuichi WAKIMOTO ◽  
Norihisa SENO ◽  
...  

Author(s):  
Yang Yang ◽  
Yongjian Zhao ◽  
Songyi Zhong ◽  
Yan Peng ◽  
Yi Yang ◽  
...  

2003 ◽  
Vol 36 (5) ◽  
pp. 861-866 ◽  
Author(s):  
A. Marciniak ◽  
C.D. Bocăială ◽  
R. Louro ◽  
J. Sa da Costa ◽  
J. Korbicz

2011 ◽  
Vol 171 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Daisuke Hirooka ◽  
Koichi Suzumori ◽  
Takefumi Kanda

2021 ◽  
Author(s):  
Bo Wang ◽  
Yunwei Li ◽  
Long Quan ◽  
Lianpeng Xia

Abstract There are the problems in the traditional pressure-compensation flow-control valve, such as low flow control accuracy, small flow control difficulty, and limited flow range. For this, a method of continuous control pressure drop Δprated (i.e. the pressure drop across the main throttling orifice) to control flow-control valve flow is proposed. The precise control of small flow is realized by reducing the pressure drop Δprated and the flow range is amplified by increasing pressure drop Δprated. At the same time, it can also compensate the flow force to improve the flow control accuracy by regulating the pressure drop Δprated. In the research, the flow-control valve with controllable pressure compensation capability (FVCP) was designed firstly and theoretically analyzed. Then the sub-model model of PPRV and the joint simulation model of the FVCP were established and verified through experiments. Finally, the continuous control characteristics of pressure drop Δprated, the flow characteristics, and flow force compensation were studied. The research results demonstrate that, compared with the traditional flow-control valve, the designed FVCP can adjust the compensation pressure difference in the range of 0∼3.4 MPa in real-time. And the flow rate can be altered within the range of 44%∼136% of the rated flow. By adjusting the compensation pressure difference to compensate the flow force, the flow control accuracy of the multi-way valve is improved, and the flow force compensation effect is obvious.


SPE Journal ◽  
2018 ◽  
Vol 24 (05) ◽  
pp. 2033-2046 ◽  
Author(s):  
Hu Jia ◽  
Yao–Xi Hu ◽  
Shan–Jie Zhao ◽  
Jin–Zhou Zhao

Summary Many oil and gas resources in deep–sea environments worldwide are often located in high–temperature/high–pressure (HT/HP) and low–permeability reservoirs. The reservoir–pressure coefficient usually exceeds 1.6, with formation temperature greater than 180°C. Challenges are faced for well drilling and completion in these HT/HP reservoirs. A solid–free well–completion fluid with safety density greater than 1.8 g/cm3 and excellent thermal endurance is strongly needed in the industry. Because of high cost and/or corrosion and toxicity problems, the application of available solid–free well–completion fluids such as cesium formate brines, bromine brines, and zinc brines is limited in some cases. In this paper, novel potassium–based phosphate well–completion fluids were developed. Results show that the fluid can reach the maximum density of 1.815 g/cm3 at room temperature, which makes a breakthrough on the density limit of normal potassium–based phosphate brine. The corrosion rate of N80 steel after the interaction with the target phosphate brine at a high temperature of 180°C is approximately 0.1853 mm/a, and the regained–permeability recovery of the treated sand core can reach up to 86.51%. Scanning–electron–microscope (SEM) pictures also support the corrosion–evaluation results. The phosphate brine shows favorable compatibility with the formation water. The biological toxicity–determination result reveals that it is only slightly toxic and is environmentally acceptable. In addition, phosphate brine is highly effective in inhibiting the performance of clay minerals. The cost of phosphate brine is approximately 44 to 66% less than that of conventional cesium formate, bromine brine, and zinc brine. This study suggests that the phosphate brine can serve as an alternative high–density solid–free well–completion fluid during well drilling and completion in HT/HP reservoirs.


Sign in / Sign up

Export Citation Format

Share Document