scholarly journals Classification of traffic over collaborative IoT and Cloud platforms using deep learning recurrent LSTM

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Sonali Patil

Internet of Things (IoT) and cloud based collaborative platforms are emerging as new infrastructures during recent decades. The classification of network traffic in terms of benign and malevolent traffic is indispensable for IoT-cloud based collaborative platforms to utilize the channel capacity optimally for transmitting the benign traffic and to block the malicious traffic. The traffic classification mechanism should be dynamic and capable enough to classify the network traffic in a quick manner, so that the malevolent traffic can be identified in earlier stages and benign traffic can be channelized to the destined nodes speedily. In this paper, we are presenting deep learning recurrent LSTM based technique to classify the traffic over IoT-cloud platforms. Machine learning techniques (MLTs) have also been employed for comparison of the performance of these techniques with the proposed LSTM RNet classification method. In the proposed research work, network traffic is classified into three classes namely Tor-Normal, NonTor-Normal and NonTor-Malicious traffic. The research outcome shows that the proposed LSTM RNet classify the traffic accurately and also helps in reducing the network latency and in enhancing the data transmission rate as well as network throughput.

The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Arivudainambi D. ◽  
Varun Kumar K.A. ◽  
Vinoth Kumar R. ◽  
Visu P.

Ransomware is a malware which affects the systems data with modern encryption techniques, and the data is recovered once a ransom amount is paid. In this research, the authors show how ransomware propagates and infects devices. Live traffic classifications of ransomware have been meticulously analyzed. Further, a novel method for the classification of ransomware traffic by using deep learning methods is presented. Based on classification, the detection of ransomware is approached with the characteristics of the network traffic and its communications. In more detail, the behavior of popular ransomware, Crypto Wall, is analyzed and based on this knowledge, a real-time ransomware live traffic classification model is proposed.


Author(s):  
Ahlam Wahdan ◽  
Sendeyah AL Hantoobi ◽  
Said A. Salloum ◽  
Khaled Shaalan

Classifying or categorizing texts is the process by which documents are classified into groups by subject, title, author, etc. This paper undertakes a systematic review of the latest research in the field of the classification of Arabic texts. Several machine learning techniques can be used for text classification, but we have focused only on the recent trend of neural network algorithms. In this paper, the concept of classifying texts and classification processes are reviewed. Deep learning techniques in classification and its type are discussed in this paper as well. Neural networks of various types, namely, RNN, CNN, FFNN, and LSTM, are identified as the subject of study. Through systematic study, 12 research papers related to the field of the classification of Arabic texts using neural networks are obtained: for each paper the methodology for each type of neural network and the accuracy ration for each type is determined. The evaluation criteria used in the algorithms of different neural network types and how they play a large role in the highly accurate classification of Arabic texts are discussed. Our results provide some findings regarding how deep learning models can be used to improve text classification research in Arabic language.


Change detection is used to find whether the changes happened or not between two different time periods using remote sensing images. We can use various machine learning techniques and deep learning techniques for the change detection analysis using remote sensing images. This paper mainly focused on computational and performance analysis of both techniques in the application of change detection .For each approach, we considered ten different kinds of algorithms and evaluated the performance. Moreover, in this research work, we have analyzed merits and demerits of each method which have used to change detection.


2021 ◽  
Vol 11 (3) ◽  
pp. 202-207
Author(s):  
Kittipat Sriwong ◽  
◽  
Kittisak Kerdprasop ◽  
Nittaya Kerdprasop

Currently, computational modeling methods based on machine learning techniques in medical imaging are gaining more and more interests from health science researchers and practitioners. The high interest is due to efficiency of modern algorithms such as convolutional neural networks (CNN) and other types of deep learning. CNN is the most popular deep learning algorithm because of its prominent capability on learning key features from images that help capturing the correct class of images. Moreover, several sophisticated CNN architectures with many learning layers are available in the cloud computing environment. In this study, we are interested in performing empirical research work to compare performance of CNNs when they are dealing with noisy medical images. We design a comparative study to observe performance of the AlexNet CNN model on classifying diseases from medical images of two types: images with noise and images without noise. For the case of noisy images, the data had been further separated into two groups: a group of images that noises harmoniously cover the area of the disease symptoms (NIH) and a group of images that noises do not harmoniously cover the area of the disease symptoms (NNIH). The experimental results reveal that NNIH has insignificant effect toward the performance of CNN. For the group of NIH, we notice some effect of noise on CNN learning performance. In NIH group of images, the data preparation process before learning can improve the efficiency of CNN.


Sign in / Sign up

Export Citation Format

Share Document