scholarly journals Decomposing complete 3-uniform hypergraph K_{n}^{(3)} into 7-cycles

2019 ◽  
Vol 39 (3) ◽  
pp. 383-393
Author(s):  
Meihua Meihua ◽  
Meiling Guan ◽  
Jirimutu Jirimutu

We use the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph. A decomposition of complete \(k\)-uniform hypergraph \(K^{(k)}_{n}\) into Hamiltonian cycles was studied by Bailey-Stevens and Meszka-Rosa. For \(n\equiv 2,4,5\pmod 6\), we design an algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of \(K^{(3)}_{n}\) into 5-cycles has been presented for all admissible \(n\leq17\), and for all \(n=4^{m}+1\) when \(m\) is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we show if \(42~|~(n-1)(n-2)\) and if there exist \(\lambda=\frac{(n-1)(n-2)}{42}\) sequences \((k_{i_{0}},k_{i_{1}},\ldots,k_{i_{6}})\) on \(D_{all}(n)\), then \(K^{(3)}_{n}\) can be decomposed into 7-cycles. We use the method of edge-partition and cycle sequence. We find a decomposition of \(K^{(3)}_{37}\) and \(K^{(3)}_{43}\) into 7-cycles.

2014 ◽  
Vol 672-674 ◽  
pp. 1935-1939
Author(s):  
Guan Ru Li ◽  
Yi Ming Lei ◽  
Jirimutu

About the Katona-Kierstead definition of a Hamiltonian cycles in a uniform hypergraph, a decomposition of complete k-uniform hypergraph Kn(k) into Hamiltonian cycles studied by Bailey-Stevens and Meszka-Rosa. For n≡2,4,5 (mod 6), we design algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of Kn(3) into 5-cycles has been presented for all admissible n≤17, and for all n=4m +1, m is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we use the method of edge-partition and cycle sequence proposed by Jirimutu and Wang. We find a decomposition of K20(3) into 5-cycles.


10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Artur Szymański ◽  
Adam Pawel Wojda

Graphs and Algorithms International audience A k-uniform hypergraph H = ( V; E) is said to be self-complementary whenever it is isomorphic with its complement (H) over bar = ( V; ((V)(k)) - E). Every permutation sigma of the set V such that sigma(e) is an edge of (H) over bar if and only if e is an element of E is called self-complementing. 2-self-comlementary hypergraphs are exactly self complementary graphs introduced independently by Ringel ( 1963) and Sachs ( 1962). <br> For any positive integer n we denote by lambda(n) the unique integer such that n = 2(lambda(n)) c, where c is odd. <br> In the paper we prove that a permutation sigma of [1, n] with orbits O-1,..., O-m O m is a self-complementing permutation of a k-uniform hypergraph of order n if and only if there is an integer l >= 0 such that k = a2(l) + s, a is odd, 0 <= s <= 2(l) and the following two conditions hold: <br> (i)n = b2(l+1) + r,r is an element of {0,..., 2(l) - 1 + s}, and <br> (ii) Sigma(i:lambda(vertical bar Oi vertical bar)<= l) vertical bar O-i vertical bar <= r. <br> For k = 2 this result is the very well known characterization of self-complementing permutation of graphs given by Ringel and Sachs.


10.37236/587 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shonda Gosselin

For a positive integer $q$, a $k$-uniform hypergraph $X=(V,E)$ is $q$-complementary if there exists a permutation $\theta$ on $V$ such that the sets $E, E^{\theta}, E^{\theta^2},\ldots, E^{\theta^{q-1}}$ partition the set of $k$-subsets of $V$. The permutation $\theta$ is called a $q$-antimorphism of $X$. The well studied self-complementary uniform hypergraphs are 2-complementary. For an integer $n$ and a prime $p$, let $n_{(p)}=\max\{i:p^i \text{divides} n\}$. In this paper, we prove that a vertex-transitive $q$-complementary $k$-hypergraph of order $n$ exists if and only if $n^{n_{(p)}}\equiv 1 (\bmod q^{\ell+1})$ for every prime number $p$, in the case where $q$ is prime, $k = bq^\ell$ or $k=bq^{\ell}+1$ for a positive integer $b < k$, and $n\equiv 1(\bmod q^{\ell+1})$. We also find necessary conditions on the order of these structures when they are $t$-fold-transitive and $n\equiv t (\bmod q^{\ell+1})$, for $1\leq t < k$, in which case they correspond to large sets of isomorphic $t$-designs. Finally, we use group theoretic results due to Burnside and Zassenhaus to determine the complete group of automorphisms and $q$-antimorphisms of these hypergraphs in the case where they have prime order, and then use this information to write an algorithm to generate all of these objects. This work extends previous, analagous results for vertex-transitive self-complementary uniform hypergraphs due to Muzychuk, Potočnik, Šajna, and the author. These results also extend the previous work of Li and Praeger on decomposing the orbitals of a transitive permutation group.


2020 ◽  
Vol 70 (2) ◽  
pp. 497-503
Author(s):  
Dipendu Maity ◽  
Ashish Kumar Upadhyay

Abstract If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equivelar map. There are eleven types of semi-equivelar maps on the torus. In 1972 Altshuler has presented a study of Hamiltonian cycles in semi-equivelar maps of three types {36}, {44} and {63} on the torus. In this article we study Hamiltonicity of semi-equivelar maps of the other eight types {33, 42}, {32, 41, 31, 41}, {31, 61, 31, 61}, {34, 61}, {41, 82}, {31, 122}, {41, 61, 121} and {31, 41, 61, 41} on the torus. This gives a partial solution to the well known Conjecture that every 4-connected graph on the torus has a Hamiltonian cycle.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


10.37236/2631 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
András Gyárfás ◽  
Gábor N. Sárközy

Here we address the problem to partition edge colored hypergraphs by monochromatic paths and cycles generalizing a well-known similar problem for graphs.We show that $r$-colored $r$-uniform complete hypergraphs can be partitioned into monochromatic Berge-paths of distinct colors. Also, apart from $2k-5$ vertices, $2$-colored $k$-uniform hypergraphs can be partitioned into two monochromatic loose paths.In general, we prove that in any $r$-coloring of a $k$-uniform hypergraph there is a partition of the vertex set intomonochromatic loose cycles such that their number depends only on $r$ and $k$.


10.37236/3610 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Louis DeBiasio ◽  
Theodore Molla

In 1960 Ghouila-Houri extended Dirac's theorem to directed graphs by proving that if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $n/2$, then $D$ contains a directed Hamiltonian cycle. For directed graphs one may ask for other orientations of a Hamiltonian cycle and in 1980 Grant initiated the problem of determining minimum degree conditions for a directed graph $D$ to contain an anti-directed Hamiltonian cycle (an orientation in which consecutive edges alternate direction). We prove that for sufficiently large even $n$, if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $\frac{n}{2}+1$, then $D$ contains an anti-directed Hamiltonian cycle. In fact, we prove the stronger result that $\frac{n}{2}$ is sufficient unless $D$ is one of two counterexamples. This result is sharp.


10.37236/3551 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Bhaswar B. Bhattacharya ◽  
Sayantan Das ◽  
Shirshendu Ganguly

In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, a function $\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\}$ is said to be an edge-discriminator on $\mathcal H$ if $\sum_{v\in E_i}{\lambda(v)}>0$, for all hyperedges $E_i\in \mathscr E$, and $\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}$, for every two distinct hyperedges $E_i, E_j \in \mathscr E$. An optimal edge-discriminator on $\mathcal H$, to be denoted by $\lambda_\mathcal H$, is an edge-discriminator on $\mathcal H$ satisfying $\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}$, where the minimum is taken over all edge-discriminators on $\mathcal H$.  We prove that any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$,  with $|\mathscr E|=m$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq m(m+1)/2$, and the equality holds if and only if the elements of $\mathscr E$ are mutually disjoint. For $r$-uniform hypergraphs $\mathcal H=(\mathcal V, \mathscr E)$, it follows from earlier results on Sidon sequences that $\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1})$, and the bound is attained up to a constant factor by the complete $r$-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m~(\geq 3)$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=m(m+1)/2-1$. This shows that all integer values between $m$ and $m(m+1)/2$ cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions.


Sign in / Sign up

Export Citation Format

Share Document