scholarly journals Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems

2005 ◽  
Vol 54 (2) ◽  
pp. 490
Author(s):  
Qiao Yong-Fen ◽  
Li Ren-Jie ◽  
Sun Dan-Na
1998 ◽  
Vol 65 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Djerassi

This paper is the third in a trilogy dealing with simple, nonholonomic systems which, while in motion, change their number of degrees-of-freedom (defined as the number of independent generalized speeds required to describe the motion in question). The first of the trilogy introduced the theory underlying the dynamical equations of motion of such systems. The second dealt with the evaluation of noncontributing forces and of noncontributing impulses during such motion. This paper deals with the linear momentum, angular momentum, and mechanical energy of these systems. Specifically, expressions for changes in these quantities during imposition and removal of constraints are formulated in terms of the associated changes in the generalized speeds.


Author(s):  
Elz˙bieta Jarze˛bowska

The paper presents a model-based tracking control strategy design for wheeled mobile systems (WMS). The strategy enables tracking a variety of WMS motions that come from task specifications and control or design requirements put on them. From the point of view of mechanics and derivation of equations of motion, the WMS belongs to one class of first order nonholonomic systems. From the perspective of nonlinear control theory, the WMS differ and may not be approached by the same control strategies and algorithms, e.g. some of them may be controlled at the kinematic level and the other at the dynamic level only. The strategy we propose is based on a modeling control oriented framework. It serves a unification of the WMS modeling and a subsequent controller design with no regard whether a specific WMS is fully actuated, underactuated, or constrained by the task constraints.


Author(s):  
Timothy A. Loduha ◽  
Bahram Ravani

Abstract In this paper we present a method for obtaining first-order decoupled equations of motion for multi-rigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or more complex dynamical systems, where the appropriate congruency transformation may be difficult to obtain, we present a constraint relaxation method based on the use of orthogonal complements. The results are illustrated using several examples. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.


Author(s):  
Keisuke Kamiya ◽  
Junya Morita ◽  
Yutaka Mizoguchi ◽  
Tatsuya Matsunaga

As basic principles for deriving the equations of motion for dynamical systems, there are d’Alembert’s principle and the principle of virtual power. From the former Hamilton’s principle and Langage’s equations are derived, which are powerful tool for deriving the equation of motion of mechanical systems since they can give the equations of motion from the scalar energy quantities. When Hamilton’s principle is applied to nonholonomic systems, however, care has to be taken. In this paper, a unified approach for holonomic and nonholonomic systems is discussed based on the modified Hamilton’s principle. In the present approach, constraints for both of the holonomic and nonholonomic systems are expressed in terms of time derivative of the position, and their variations are treated similarly to the principle of virtual power, i.e. time and position are fixed in operation with respect to the variations. The approach is applied to a holonomic and a simple nonholonomic systems.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
John T. Foster

A variationally consistent approach to constrained rigid-body motion is presented that extends D'Alembert's principle in a way that has a form similar to Kane's equations. The method results in minimal equations of motion for both holonomic and nonholonomic systems without a priori consideration of preferential coordinates.


1994 ◽  
Vol 61 (3) ◽  
pp. 689-694 ◽  
Author(s):  
H. Esse´n

The formulation and derivation of equations of motion for finite degree-of-freedom nonholonomic systems, is discussed. The starting point is Newton’s equation of motion in the 3K-dimensional unconstrained configuration space of K particles. Constraints represent knowledge that motion is only possible along some directions in the local tangent spaces. Only projections of the 3K-dimensional vector equation onto these allowed directions are of interest. The formalism is essentially that of Kane-Appell cast into an abstract form. It is shown to give the same equations as Hamel’s generalization of Lagrange’s method. The algorithmic advantage of the Kane-Appell projection approach is stressed.


2000 ◽  
Vol 21 (1) ◽  
pp. 45-56
Author(s):  
Do Sanh

In [3, 4, 5] the form of equations of motion in holonomic coordinates has constructed. The equations obtained give an effective tool for investigating complicated systems. In the present paper the form of equations of motion is written in quasi-coordinates. These equations are solved with respect to quasi-accelerations, which allow to define the motion of a holonomic and nonholonomic systems by a closed set of algebraic – differential equations. The reaction forces of constraints imposed on the system under consideration are calculated by means of a simple algorithm. For illustrating the effectiveness of this form of equations an example is considered.


Sign in / Sign up

Export Citation Format

Share Document