scholarly journals Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer

2010 ◽  
Vol 59 (3) ◽  
pp. 1625
Author(s):  
Wang Jin-Chan ◽  
Zhang Chun-Min ◽  
Zhao Bao-Chang ◽  
Liu Ning
Author(s):  
C. Zhang ◽  
T. Yan ◽  
T. Mu ◽  
Y. He

Abstract. Polarization array based polarization Michelson wind field detection interferometer is a new type of interferometer for detecting atmospheric temperature and wind field velocity. We proposed a theoretical model and design of the novel static polarization wind imaging interferometer (NSPWII). It consists of a group of polarizers and waveplates, a polarization beamsplitter, a field widened Michelson interferometer, a pyramid prism, and a polarization array. Based on the principle of polarization interference, a polarization array composed of four polarizers with 45° polarization directions differences is directly in front of the detector, and four modulated light beams from the pyramid prism pass through the four polarizers. Then, interferograms with four different intensity are imaged on the detector simultaneously, which further provides the atmospheric temperature and wind field velocity. The advantages of this instrument are static (no moving parts), achromatic, and temperature compensated. It is capable of measuring the upper atmospheric wind field in real time with a high precision.


2010 ◽  
Vol 59 (6) ◽  
pp. 4369
Author(s):  
Liu Ning ◽  
Zhang Chun-Min ◽  
Wang Jin-Chan ◽  
Mu Ting-Kui

Optik ◽  
2013 ◽  
Vol 124 (24) ◽  
pp. 6932-6935
Author(s):  
Jinchan Wang ◽  
Chunmin Zhang ◽  
Wenyi Ren ◽  
Lin Zhang ◽  
Junqiang Mao

2013 ◽  
Vol 52 (11) ◽  
pp. 2248 ◽  
Author(s):  
Jinchan Wang ◽  
Chunmin Zhang ◽  
Lin Zhang ◽  
Wenyi Ren ◽  
Xiaoke Sun

Author(s):  
P. B. Basham ◽  
H. L. Tsai

The use of transmission electron microscopy (TEM) to support process development of advanced microelectronic devices is often challenged by a large amount of samples submitted from wafer fabrication areas and specific-spot analysis. Improving the TEM sample preparation techniques for a fast turnaround time is critical in order to provide a timely support for customers and improve the utilization of TEM. For the specific-area sample preparation, a technique which can be easily prepared with the least amount of effort is preferred. For these reasons, we have developed several techniques which have greatly facilitated the TEM sample preparation.For specific-area analysis, the use of a copper grid with a small hole is found to be very useful. With this small-hole grid technique, TEM sample preparation can be proceeded by well-established conventional methods. The sample is first polished to the area of interest, which is then carefully positioned inside the hole. This polished side is placed against the grid by epoxy Fig. 1 is an optical image of a TEM cross-section after dimpling to light transmission.


Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.


2020 ◽  
Vol 8 (20) ◽  
pp. 6832-6838 ◽  
Author(s):  
Da Teng ◽  
Kai Wang ◽  
Qiongsha Huan ◽  
Weiguang Chen ◽  
Zhe Li

Tunable ultra-deep subwavelength optical field confinement is reported by using a graphene-coated nanowire-loaded silicon nano-rib waveguide.


1981 ◽  
Vol 46 (02) ◽  
pp. 547-549 ◽  
Author(s):  
E M Essien ◽  
M I Ebhota

SummaryDuring acute malaria infection, platelets in human platelet-rich plasma are hypersensitive to the addition of ADP between 1.0 uM and 5.0 uM, or adrenaline 0.11 uM as aggregating agents. The mean maximum aggregation amplitude (as % of light transmission) obtained from 8 subjects in response to added ADP (1.0 uM), 39.8 ± 27 (1SD), was significantly greater than the value in 6 controls (5.2±6.7 (1SD); t = 3, 51 P <0.005). A similar pattern of response was obtained with higher ADP concentrations (2.4,4.5 or 5.0 uM) in 22 patients and 20 control subjects (89.9±14.9% vs 77.8±16.5% (1SD) t = 2.45, P <0.02). Addition of 4.5 uM ADP to patient PRP usually evoked only a single aggregation wave (fused primary and secondary waves) while the typical primary and secondary wave pattern was usually obtained from controls.Mean plasma B-thromboglobulin (BTG) concentration in 7 patients (208.3 ± 15.6 ng/ml) was significantly higher than the value in 6 control subjects (59.2±15.7 ng/ml; t = 13.44, P <0.002).


Sign in / Sign up

Export Citation Format

Share Document