High-performance light transmission based on graphene plasmonic waveguides

2020 ◽  
Vol 8 (20) ◽  
pp. 6832-6838 ◽  
Author(s):  
Da Teng ◽  
Kai Wang ◽  
Qiongsha Huan ◽  
Weiguang Chen ◽  
Zhe Li

Tunable ultra-deep subwavelength optical field confinement is reported by using a graphene-coated nanowire-loaded silicon nano-rib waveguide.

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2008 ◽  
Vol 26 (16) ◽  
pp. 2928-2936 ◽  
Author(s):  
Robert Halir ◽  
I. Molina-Fernandez ◽  
A. Ortega-Monux ◽  
J. G. Wanguemert-Perez ◽  
Dan-Xia Xu ◽  
...  

2020 ◽  
Author(s):  
Xiao-Xue Wang ◽  
De-Hui Guan ◽  
Fei Li ◽  
Ma-Lin Li ◽  
Li-Jun Zheng ◽  
...  

Abstract The photo-assisted lithium-oxygen (Li-O2) system emerged as an important direction for future development by effectively reducing the large overpotential in Li-O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, we make a breakthrough in overcoming these challenges by developing a new magnetic and optical field multi-assisted Li-O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, suppressing the recombination of charge carriers. The magnetic and optical field multi-assisted Li-O2 battery achieves an ultra-low charge potential of 2.73 V, a high energy efficiency of 96.7%, as well as a good cycling stability of 200 h. This external magnetic and optical field multi-assisted technology paves a new way of developing high-performance Li-O2 batteries and other energy storage systems.


2021 ◽  
Vol 855 (1) ◽  
pp. 012011
Author(s):  
R Habets ◽  
Z Vroon ◽  
B Erich ◽  
N Meulendijks ◽  
D Mann ◽  
...  

Abstract Building integrated photovoltaics (BIPV) offer aesthetics and freedom of design for architects and home owners. This can accelerate implementation and free up new spaces for solar energy harvesting at building level, which is a necessary step towards a climate neutral built environment. Colored solar panels with high conversion efficiency and low cost price are an important development for large scale market penetration of BIPV. Here we report a solution processed structural color coating for solar panels and solar collectors. We show that virtually any color can be prepared, that the desired coating stack can be designed using optical calculations and that the exact color can be produced via a low cost solution process. Furthermore, we show that the light transmission for the colored glass plates is still very high, exceeding commonly used absorbing colors and enables very high solar cell efficiency. The colored PV panels have been tested in real environment and via accelerated lifetime testing for 3 years without any performance decline or degradation.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3687
Author(s):  
Xiaoshu Zan ◽  
Wenyuan Zhang ◽  
Kai Ni ◽  
Zhikai Jiang ◽  
Yi Gong

In order to meet the working requirements of high performance and low cost for a photovoltaic (PV) aircraft driven by switched reluctance motors (SRMs), a multiport driving topology (MDT) is proposed. The converter is composed of an asymmetric half-bridge and a multiport power source circuit. Three driving and two charging modes can be realized through simple control of the switches. The output torque and the efficiency of the system are improved, because the excitation and demagnetization processes are accelerated by increasing the commutation voltage. The battery pack can be self-charged when the system is running, and PV panels can be used to charge the battery pack to reduce energy consumption when the system is stationary. The simulation analysis and the experimental verification on an 8/6 SRM confirm the effectiveness of the MFT proposed in this paper.


PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chenlei Li ◽  
Ming Zhang ◽  
Hongnan Xu ◽  
Ying Tan ◽  
Yaocheng Shi ◽  
...  

AbstractOn-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip mode-manipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelength-structured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higher-order-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.


Sign in / Sign up

Export Citation Format

Share Document