scholarly journals Effects of substrate resistivity and interface defect density on performance of solar cell with silicon heterojunctions

2010 ◽  
Vol 59 (12) ◽  
pp. 8870
Author(s):  
Zhou Jun ◽  
Di Ming-Dong ◽  
Sun Tie-Tun ◽  
Sun Yong-Tang ◽  
Wang Hao
2021 ◽  
Author(s):  
Tian Pu ◽  
Honglie Shen ◽  
Quntao Tang

Abstract In this paper, a charged Al2O3 tunneling film as an assisting for amorphous Si (a-Si) passivated contact layer is proposed and theoretically simulated for its potential application in improving a-Si passivated contact p-type (a-PC-p) solar cell. The concept is based on an Ag/n+ c-Si/p c-Si/Al2O3/p+ a-Si/Al structure. The key feature is the introduction of a charged Al2O3 layer, which facilitates the tunneling of holes through an Al2O3 insulator layer accompanied by the reduction of interface defect density (Dit). The negative charge in the Al2O3 layer makes the energy band of p-type c-Si bend upward, realizing the accumulation of holes and repelling of electrons at the c-Si/a-Si interface simultaneously. The influence of interface negative charges (Qit) between a-Si and c-Si, Al2O3 thickness, Al2O3 bandgap, interface defect density (Dit) at the a-Si/c-Si interface are systematically investigated on the output parameters of a-PC-p cells. Inserting a charged Al2O3 film between the c-Si/a-Si interface, a +4.2 % relative efficiency gain is predicted theoretically compared with the a-PC-p cells without the Al2O3 layer. Subsequently, the device performance under various temperatures is simulated, and the insertion of a charged Al2O3 layer obviously decreases the Pmax temperature coefficient from -0.336 % /℃ to -0.247 % /℃, which is analogous to that of Heterojunction with Intrinsic Thin layer (HIT) solar cell. The above results demonstrate a better temperature response for a-PC-p cells with a charged Al2O3 layer, paving a road for its potential application in high-efficiency and high thermal stability a-PC-p solar cells.


2021 ◽  
pp. 108135
Author(s):  
D. Scirè ◽  
R. Macaluso ◽  
M. Mosca ◽  
S. Mirabella ◽  
A. Gulino ◽  
...  

2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.


1994 ◽  
Vol 336 ◽  
Author(s):  
A. Terakawa ◽  
M. Shima ◽  
K. Sayama ◽  
H. Tarui ◽  
H. Nishiwaki ◽  
...  

ABSTRACTThe film properties and solar cell performance of a-SiGe:H samples with the same optical gap and different combinations of hydrogen content (CH) and germanium content (CGe) have been compared. The optimum composition for the initial properties, such as the tail characteristic energy, defect density and conversion efficiency of the solar cell, was determined, and the differences could be explained by the difference in H bonding configuration. The degradation ratio of the conversion efficiency becomes larger in higher CH samples. This suggests that hydrogen or Si-H2 participates in light-induced degradation. As a result, the optimum CH for an efficient solar cell is believed to shift to the lower CH region after light soaking. Based on these findings, the stabilized conversion efficiency of 3.3% under red light (γ>650nm) for an a-SiGe:H single-junction solar cell (1cm2) and 10.6% under lsun light for an a-Si/a-SiGe double-junction stacked solar cell (1cm2) have been achieved. The degradation ratio is only 8.6% for the double-junction solar cell.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012044
Author(s):  
Mussab J. Ahmed ◽  
Ayed N. Saleh

Abstract In this research, the effect of bulk defect on the performance of the solar cell was studied by using the AFORS-HET simulation program. This was done by varying the density of defects including both Acceptor-like and donor-like within the SnS absorption layer. The thickness of the SnS layer was changed from 600nm to 9000nm with the change in bulk defect density in the same layer from (1E10 to 1E17 cm−3). The results showed that when the density of defects is less than 1E14cm−3, it has no effect on the performance of the solar cell, but its effect appears after this concentration, On the contrary, it is the effect of thickness, the results showed that the change in thickness at the defect density of E16cm−3 does not affect on the optical and electrical properties. Also, the results showed that the effect of defects is greatest at low concentrations of Na impurities, and this effect begins to decrease with increasing the concentration of impurities.


Sign in / Sign up

Export Citation Format

Share Document