Annealing Kinetics of Amorphous Silicon Alloy Solar Cells Made at Various Deposition Rates

2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.

2005 ◽  
Author(s):  
Hiroaki Kakiuchi ◽  
Hiromasa Ohmi ◽  
Yasuhito Kuwahara ◽  
Mitsuhiro Matsumoto ◽  
Yusuke Ebata ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on high rate deposition of hydrogenated amorphous silicon (a-Si:H) and silicon germanium (a-SiGe:H) based n-i-p solar cells. The intrinsic a-Si:H and a-SiGe:H layers were deposited using modified very high frequency (MVHF) glow discharge. We found that both the initial cell performance and stability of the MVHF a-Si:H single-junction cells are independent of the deposition rate up to 15 Å/s. The average initial and stable active-area cell efficiencies of 10.0% and 8.5%, respectively, were obtained for the cells on textured Ag/ZnO coated stainless steel substrates. a-SiGe:H single-junction cells were also optimized at a rate of ~10 Å/s. The cell performance is similar to those made using conventional radio frequency technique at 3 Å/s. By combining the optimized component cells made at 10 Å/s, an a-Si:H/a-SiGe:H double-junction solar cell with an initial active-area efficiency of 11.7% was achieved.


2006 ◽  
Vol 45 (4B) ◽  
pp. 3587-3591 ◽  
Author(s):  
Hiroaki Kakiuchi ◽  
Hiromasa Ohmi ◽  
Yasuhito Kuwahara ◽  
Mitsuhiro Matsumoto ◽  
Yusuke Ebata ◽  
...  

2009 ◽  
Vol 93 (6-7) ◽  
pp. 1154-1157 ◽  
Author(s):  
Jhantu Kumar Saha ◽  
Koji Haruta ◽  
Mina Yeo ◽  
Tomohiro Koabayshi ◽  
Hajime Shirai

1999 ◽  
Vol 557 ◽  
Author(s):  
B. Yan ◽  
J. Yang ◽  
S. Guha ◽  
A. Gallagher

AbstractPositive ionic energy distributions in modified very-high-frequency (MVHF) and radio frequency (RF) glow discharges were measured using a retarding field analyzer. The ionic energy distribution for H2 plasma with 75 MHz excitation at a pressure of 0.1 torr has a peak at 22 eV with a half-width of about 6 eV. However, with 13.56 MHz excitation, the peak appears at 37 eV with a much broader half-width of 18 eV. The introduction of SiH4 to the plasma shifts the distribution to lower energy. Increasing the pressure not only shifts the distribution to lower energy but also broadens the distribution. In addition, the ionic current intensity to the substrate is about five times higher for MVHF plasma than for RF plasma. In order to study the effect of ion bombardment, the deposition of a-Si alloy solar cells using MVHF was investigated in detail at different pressures and external biases. Lowering the pressure and negatively biasing the substrate increases ion bombardment energy and results in a deterioration of cell performance. It indicates that ion bombardment is not beneficial for making solar cells using MVHF. By optimizing the deposition conditions, a 10.8% initial efficiency of a-Si/a-SiGe/SiGe triple-junction solar cell was achieved at a deposition rate of 0.6 nm/sec.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2010 ◽  
Vol 94 (9) ◽  
pp. 1534-1541 ◽  
Author(s):  
J.K. Rath ◽  
M. Brinza ◽  
Y. Liu ◽  
A. Borreman ◽  
R.E.I. Schropp

1995 ◽  
Vol 377 ◽  
Author(s):  
J. Fölsch ◽  
F. Finger ◽  
T. Kulessa ◽  
F. Siebke ◽  
W. Beyer ◽  
...  

ABSTRACTTo prepare hydrogenated amorphous silicon-germanium alloys as low gap material for multi-junction solar cells in plasma enhanced chemical vapour deposition, the well established concept of strong dilution of the process gases with hydrogen has been used. Two different regimes of alloying were found: for low Ge content (x < 0.40) we observe material with low defect density, small Urbach energy and high values of the ambipolar diffusion length. In the regime of high Ge content (x > 0.40) the defect densities and Urbach energies are high and the values of the ambipolar diffusion length low. The transition is accompanied by the appearance of a low-temperature peak in hydrogen effusion experiments indicating a void rich film structure. Material from just above and below the transition zone is used in pin solar cells leading to a much enhanced red response compared with a-Si:H cells. The differences seen in the material quality are mirrored in the solar cell properties. By carefully adjusting the active layer thickness material with low diffusion length shows also reasonable solar cell performance.


Sign in / Sign up

Export Citation Format

Share Document