scholarly journals Influence of isotope substitution of sodium molecule on the integral cross sections of rotational excitation in low-temperature collisions of He-Na2

2011 ◽  
Vol 60 (2) ◽  
pp. 020304
Author(s):  
臧华平,李文峰
2011 ◽  
Vol 20 (2) ◽  
pp. 020301
Author(s):  
Hua-Ping Zang ◽  
Wen-Feng Li ◽  
Rong-Feng Linghu ◽  
Xin-Lu Cheng ◽  
Xiang-Dong Yang

1968 ◽  
Vol 211 (1) ◽  
pp. 35-50 ◽  
Author(s):  
W. Erlewein ◽  
M. von Seggern ◽  
J. P. Toennies

2018 ◽  
Vol 363 (3) ◽  
Author(s):  
Théophile Tchakoua ◽  
Mama Pamboundom ◽  
Berthelot Said Duvalier Ramlina Vamhindi ◽  
Serge Guy Nana Engo ◽  
Ousmanou Motapon ◽  
...  

2010 ◽  
Vol 2010 (1) ◽  
pp. 000028-000035 ◽  
Author(s):  
Jason D. Reed ◽  
Matthew Lueck ◽  
Chris Gregory ◽  
Alan Huffman ◽  
John M. Lannon ◽  
...  

The results of bonding and stress testing of Cu/Sn-Cu bonded dice and Cu-Cu thermocompression bonded dice at 10μm and 15μm pitch in large area arrays are shown. The interconnect bonding process pressure and temperature required for the formation of low resistance (<100 mΩ), high yielding (99.99 % individual bond yield), and reliable interconnects is described. In the case of Cu/Sn-Cu, use of a mechanical key was found to improve yield. A run of 22 consecutive bond pairs was made with the mechanical key, resulting in 98 % aggregate channel yield at 10μm pitch in area arrays containing 325,632 individual bonds per die to achieve an interconnect density of 106 / cm2. SEM cross sections of Cu/Sn-Cu and Cu-Cu bonded samples and EDS analysis of Cu/Sn intermetallic compounds both before and after stress testing are presented. The results of thermal cycling and humidity-temperature testing on electrical yield and resistance are presented for Cu/Sn-Cu with underfill. Comparison of the electrical and shear test performance of Cu/Sn-Cu and Cu-Cu is made. Low temperature bonding (at 210°C, below the melting point of tin) is demonstrated to produce high electrical yield, high shear strength and similar intermetallic compound formation to devices bonded at 300°C. The low temperature process may prove useful for integrating IC devices that have low thermal budgets.


2020 ◽  
Vol 74 (7) ◽  
Author(s):  
Lamia Aïssaoui ◽  
Peter J. Knowles ◽  
Moncef Bouledroua

Abstract The mobility of N+ ions in ground-state helium gas at very low temperature is examined with explicit inclusion of spin–orbit coupling effects. The ionic kinetics is treated theoretically with the three-temperature model. The N+–He interaction potentials, including spin–orbit coupling, are determined using high-level ab initio calculations. Then, the classical and quantal transport cross sections, both needed in the computation of the mobility coefficients, are calculated in terms of the collisional energy of the N+–He system. The numerical results, at temperature 4.3 K, show the spin–orbit interactions have negligible effect on the mobility coefficients. Graphical abstract


RSC Advances ◽  
2014 ◽  
Vol 4 (109) ◽  
pp. 63817-63823 ◽  
Author(s):  
Biplab Goswami ◽  
Rahla Naghma ◽  
Bobby Antony

R-matrix and SCOP methods are used at low and high energies respectively to find e-GeF4 TCS. Electronic and rotational excitation, momentum transfer and elastic differential cross sections are also calculated. A shape resonance is observed at 5.7 eV.


Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1687-1690 ◽  
Author(s):  
Justin Jankunas ◽  
Richard N. Zare ◽  
Foudhil Bouakline ◽  
Stuart C. Althorpe ◽  
Diego Herráez-Aguilar ◽  
...  

When a hydrogen (H) atom approaches a deuterium (D2) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D2 → HD(v′ = 4, j′) + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j′ HD products to become backward scattered.


Sign in / Sign up

Export Citation Format

Share Document