scholarly journals WIND TURBINE COMPOSITE BLADE: FRACTURE MECHANICS ASSESSMENT

2020 ◽  
Vol 50 (3) ◽  
Author(s):  
WALEED AHMED
2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Agnese Coscetta ◽  
Aldo Minardo ◽  
Lucio Olivares ◽  
Maurizio Mirabile ◽  
Mario Longo ◽  
...  

Wind turbine (WT) blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have been carried out over a 14 m long WT composite blade, demonstrating the possibility of performing distributed strain and vibration measurements.


2013 ◽  
Vol 364 ◽  
pp. 102-106 ◽  
Author(s):  
Li Qun Zhou ◽  
Shuai Heng Xing ◽  
Yu Ping Li

Wind turbine blade model is analyzed based on finite element method. Research and comparison of blade natural frequencies is made in different rotational working conditions taking into account external factors such as the rotational inertia force. Also the relationship between the composite ply angle and natural frequency is analyzed. The result shows that the nature frequency of wind turbine blade is influence greatly by the stress stiffening effect for the blade rotation. And the nature frequency of wind turbine blade can be designed by adjusting the single fiber layer ply angle of blade.


2011 ◽  
Vol 35 (11) ◽  
pp. 1407-1413 ◽  
Author(s):  
Hong-Kwan Kim ◽  
Tae-Seong Kim ◽  
Jang-Ho Lee ◽  
Byung-Young Moon ◽  
Ki-Weon Kang

2014 ◽  
Vol 22 (4) ◽  
pp. 423-430 ◽  
Author(s):  
Yang Zhong-Jia ◽  
Gu Yi-Zhuo ◽  
Li Min ◽  
Li Yan-Xia ◽  
Lu Jie ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 1092-1103 ◽  
Author(s):  
Pengfei Liu ◽  
Dong Xu ◽  
Jingguo Li ◽  
Zhiping Chen ◽  
Shuaibang Wang ◽  
...  

This article studies experimentally the damage behaviors of a 59.5-m-long composite wind turbine blade under accelerated fatigue loads using acoustic emission technique. First, the spectral analysis using the fast Fourier transform is used to study the components of acoustic emission signals. Then, three important objectives including the attenuation behaviors of acoustic emission waves, the arrangement of sensors as well as the detection and positioning of defect sources in the composite blade by developing the time-difference method among different acoustic emission sensors are successfully reached. Furthermore, the clustering analysis using the bisecting K-means method is performed to identify different damage modes for acoustic emission signal sources. This work provides a theoretical and technique support for safety precaution and maintaining of in-service blades.


2011 ◽  
Vol 66-68 ◽  
pp. 1199-1206
Author(s):  
Samir Ahmad ◽  
Izhar-ul-Haq

In recent years the wind turbine blade has been the subject of comprehensive study and research amongst all other components of the wind turbine. As our appetite for renewable energy from the wind turbine continues to increase, companies now focus on rotor blades which can go up to 80m in length. The blade material not only have to face large aerodynamic, inertial and fatigue loads but are now being designed to endure environmental effects such as Ultraviolet degradation of surface, accumulation of dust particles at sandy locations, ice accretion on blades in cold countries, insect collision on blades and moisture ingress. All this is considered to ensure that the blades complete its designated life span. Furthermore exponential increase in composite blade manufacturing is causing a substantial amount of unrecyclable material. All these issues raise challenges for wind blade material use, its capacity to solve above mentioned problems and also maintain its structural integrity. This paper takes on this challenge by optimizing from the properties, merits, demerits and cost of different possible competing materials. Then the material is checked for its structural integrity through Finite Element Analysis simulation using standards like IEC-61400-1.This paper also shows the future direction of research by elaborating the influence nanotechnology can have in the improvement of the wind blade.


2001 ◽  
Author(s):  
LADEAN R. MCKITTRICK ◽  
DOUGLAS S. CAIRNS ◽  
JOHN F. MANDELL ◽  
DAVID C. COMBS ◽  
DONALD A. RABERN ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Sunil Kumar ◽  
R.B. Anand

Sign in / Sign up

Export Citation Format

Share Document