scholarly journals Perrin’s bivariate and complex polynomials

2021 ◽  
Vol 27 (2) ◽  
pp. 70-78
Author(s):  
Renata Passos Machado Vieira ◽  
Milena Carolina dos Santos Mangueira ◽  
Francisco Regis Vieira Alves ◽  
Paula Maria Machado Cruz Catarino

In this article, a study is carried out around the Perrin sequence, these numbers marked by their applicability and similarity with Padovan’s numbers. With that, we will present the recurrence for Perrin’s polynomials and also the definition of Perrin’s complex bivariate polynomials. From this, the recurrence of these numbers, their generating function, generating matrix and Binet formula are defined.

1985 ◽  
Vol 50 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Vilém Kodýtek

The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a generating function of the MM system of thermodynamic quantities for solutions in the state of osmotic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, and m in the definition of the Lewis-Randall (LR) system by AMM, T, P0, and c (P0 being the pure solvent pressure). Following this way the LR to MM conversion relations for the first derivatives of the free energy are obtained in a simple form. New relations are derived for its second derivatives.


The generating function for canonical transformations derived by Marinov has the important property of symplectic invariance (i. e. under linear canonical transformations). However, a more geometric approach to the rederivation of this function from the variational principle reveals that it is not free from caustic singularities after all. These singularities can be avoided without breaking the symplectic invariance by the definition of a complementary generating function bearing an analogous relation to the Woodward ambiguity function in telecommunications theory as that tying Marinov’s function to the Wigner function and the Weyl transform in quantum mechanics. Marinov’s function is specially apt to describe canonical transformations close to the identity, but breaks down for reflections through a point in phase space, easily described by the new generating function.


2009 ◽  
Vol 52 (1) ◽  
pp. 41-64 ◽  
Author(s):  
GIEDRIUS ALKAUSKAS

AbstractThe Minkowski question mark function ?(x) arises as a real distribution of rationals in the Farey tree. We examine the generating function of moments of ?(x). It appears that the generating function is a direct dyadic analogue of period functions for Maass wave forms and it is defined in the cut plane \ (1, ∞). The exponential generating function satisfies an integral equation with kernel being the Bessel function. The solution of this integral equation leads to the definition of dyadic eigenfunctions, arising from a certain Hilbert–Schmidt operator. Finally, we describe p-adic distribution of rationals in the Stern–Brocot tree. Surprisingly, the Eisenstein series G2(z) does manifest in both real and p-adic cases.


Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this study, we bring into light a new generalization of the Jacobsthal Lucas numbers, which shall also be called the bi-periodic Jacobsthal Lucas sequence as   with initial conditions $$\ \hat{c}_{0}=2,\ \hat{c}_{1}=a.$$ The Binet formula as well as the generating function for this sequence are given. The convergence property of the consecutive terms of this sequence is examined after which the well known Cassini, Catalan and the D'ocagne identities as well as some related summation formulas are also given.


The aim of the present paper is to present a generalization of Gaussian Jacobsthal polynomial and Gaussian Jacobsthal Lucas polynomial. Present paper extends the work of Asci and Gurel [3]. Some important generalizations of Generating function, Binet formula, Explicit formula, Q matrix and determinantal representations of these polynomials are also produced.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

Motivated by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim, in the present paper, we consider a class of new generating function for the Frobenius-Genocchi polynomials, called the type 2 poly-Frobenius-Genocchi polynomials, by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Frobenius-Genocchi polynomias equal a linear combination of the classical Frobenius-Genocchi polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Frobenius-Genocchi polynomials and Bernoulli polynomials of order k. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim, we introduce the unipoly-Frobenius-Genocchi polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Frobenius-Genocchi polynomials and the classical Frobenius-Genocchi polynomials.


Author(s):  
Faruk Kaplan ◽  
Arzu Özkoç Öztürk

The main object of the present paper is to consider the binomial transforms for Horadam quaternion sequences. We gave new formulas for recurrence relation, generating function, Binet formula and some basic identities for the binomial sequence of Horadam quaternions. Working with Horadam quaternions, we have found the most general formula that includes all binomial transforms with recurrence relation from the second order. In the last part, we determined the recurrence relation for this new type of quaternion by working with the iterated binomial transform, which is a dierent type of binomial transform.


Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this paper, we bring into light the matrix representation of bi-periodic Jacobsthal sequence, which we shall call the bi-periodic Jacobsthal matrix sequence. We dene it as with initial conditions J0 = I identity matrix, . We obtained the nth general term of this new matrix sequence. By studying the properties of this new matrix sequence, the well-known Cassini or Simpson's formula was obtained. We then proceed to find its generating function as well as the Binet formula. Some new properties and two summation formulas for this new generalized matrix sequence were also given.


10.29007/kvp3 ◽  
2020 ◽  
Author(s):  
A. Dileep ◽  
Kuldeep S. Meel ◽  
Ammar F. Sabili

Mathematical induction is a fundamental tool in computer science and mathematics. Henkin [12] initiated the study of formalization of mathematical induction restricted to the setting when the base case B is set to singleton set containing 0 and a unary generating function S. The usage of mathematical induction often involves wider set of base cases and k−ary generating functions with different structural restrictions. While subsequent studies have shown several Induction Models to be equivalent, there does not exist precise logical characterization of reduction and equivalence among different Induction Models. In this paper, we generalize the definition of Induction Model and demonstrate existence and construction of S for given B and vice versa. We then provide a formal characterization of the reduction among different Induction Models that can allow proofs in one Induction Models to be expressed as proofs in another Induction Models. The notion of reduction allows us to capture equivalence among Induction Models.


2020 ◽  
Vol 28 (3) ◽  
pp. 89-102
Author(s):  
Özgür Erdağ ◽  
Ömür Deveci ◽  
Anthony G. Shannon

AbstractIn this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.


Sign in / Sign up

Export Citation Format

Share Document