scholarly journals Cerebellar modules operate at different frequencies

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haibo Zhou ◽  
Zhanmin Lin ◽  
Kai Voges ◽  
Chiheng Ju ◽  
Zhenyu Gao ◽  
...  

Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. In this study, we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depend on activation of TRPC3, and that this property is relevant for all cerebellar functions.

2015 ◽  
Vol 113 (7) ◽  
pp. 2524-2536 ◽  
Author(s):  
Haibo Zhou ◽  
Kai Voges ◽  
Zhanmin Lin ◽  
Chiheng Ju ◽  
Martijn Schonewille

The massive computational capacity of the cerebellar cortex is conveyed by Purkinje cells onto cerebellar and vestibular nuclei neurons through their GABAergic, inhibitory output. This implies that pauses in Purkinje cell simple spike activity are potentially instrumental in cerebellar information processing, but their occurrence and extent are still heavily debated. The cerebellar cortex, although often treated as such, is not homogeneous. Cerebellar modules with distinct anatomical connectivity and gene expression have been described, and Purkinje cells in these modules also differ in firing rate of simple and complex spikes. In this study we systematically correlate, in awake mice, the pausing in simple spike activity of Purkinje cells recorded throughout the entire cerebellum, with their location in terms of lobule, transverse zone, and zebrin-identified cerebellar module. A subset of Purkinje cells displayed long (>500-ms) pauses, but we found that their occurrence correlated with tissue damage and lower temperature. In contrast to long pauses, short pauses (<500 ms) and the shape of the interspike interval (ISI) distributions can differ between Purkinje cells of different lobules and cerebellar modules. In fact, the ISI distributions can differ both between and within populations of Purkinje cells with the same zebrin identity, and these differences are at least in part caused by differential synaptic inputs. Our results suggest that long pauses are rare but that there are differences related to shorter intersimple spike intervals between and within specific subsets of Purkinje cells, indicating a potential further segregation in the activity of cerebellar Purkinje cells.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Antoine M Valera ◽  
Francesca Binda ◽  
Sophie A Pawlowski ◽  
Jean-Luc Dupont ◽  
Jean-François Casella ◽  
...  

Motor coordination is supported by an array of highly organized heterogeneous modules in the cerebellum. How incoming sensorimotor information is channeled and communicated between these anatomical modules is still poorly understood. In this study, we used transgenic mice expressing GFP in specific subsets of Purkinje cells that allowed us to target a given set of cerebellar modules. Combining in vitro recordings and photostimulation, we identified stereotyped patterns of functional synaptic organization between the granule cell layer and its main targets, the Purkinje cells, Golgi cells and molecular layer interneurons. Each type of connection displayed position-specific patterns of granule cell synaptic inputs that do not strictly match with anatomical boundaries but connect distant cortical modules. Although these patterns can be adjusted by activity-dependent processes, they were found to be consistent and predictable between animals. Our results highlight the operational rules underlying communication between modules in the cerebellar cortex.


1992 ◽  
Vol 67 (3) ◽  
pp. 483-495 ◽  
Author(s):  
C. Dugas ◽  
A. M. Smith

1. Two monkeys were trained to grasp, lift, and hold a device between the thumb and forefinger for 1 s. The device was equipped with a position transducer and strain gauges that measured the horizontal grip force and the vertical lifting or load force. On selected blocks of 20-30 trials, a force-pulse perturbation was applied to the object during static holding to simulate object slip. The animals were required to resist this displacement by stiffening the joints of their wrists and fingers to obtain a fruit juice reward. Single cells in the hand representation area of the paravermal anterior lobe of the cerebellar cortex were recorded during perturbed and unperturbed holding. If conditions permitted, the cell discharge was also recorded during lifting of objects of various weights (15, 65, or 115 g) or different surface textures (sandpaper or polished metal), and when possible the cutaneous or proprioceptive fields of the neurons were characterized with the use of natural stimulation. 2. On perturbed trials, the force pulse was always applied to the manipulandum after it had been held stationary within the position window for 750 ms. The perturbation invariably elicited a reflexlike increase of electromyographic (EMG) activity in wrist and finger muscles, resulting in a time-locked increase in grip force that peaked at a latency between 50 and 100 ms. 3. The object-slip perturbation had a powerful effect on cerebellar cortical neurons at a mean latency of 45 +/- 14 (SD) ms. Reflexlike increases or decreases in simple spike discharge occurred in 55% (53/97) of unidentified cells and 49% (21/43) of Purkinje cells recorded in the anterior paravermal and lateral cerebellar cortex. 4. The perturbation failed to evoke complex spike responses from any of the Purkinje cells examined. All the perturbation-evoked activity changes involved modulation of the simple spike discharge. The perturbations stimulated the simple-spike receptive field of most Purkinje cells recorded here, which suggests that the short-latency unit responses were triggered by afferent stimulation. Only one Purkinje cell was found with a distinct complex-spike receptive field on the thumb, but this neuron did not respond to the perturbation. It appears that simple- and complex-spike to receptive fields are not always identical or even closely related. 5. The majority of Purkinje and unidentified neurons that responded to the perturbation had cutaneous receptive fields, although some had proprioceptive fields. Seventy-seven neurons were examined for peripheral receptive fields and were also tested with the perturbation.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Author(s):  
Jingyun Zhang ◽  
Khoa Tran-Anh ◽  
Tatsumi Hirata ◽  
Izumi Sugihara

AbstractHeterogeneity of Purkinje cells (PCs) that are arranged into discrete longitudinal stripes in the cerebellar cortex is related to the timing of PC generation. To understand the cerebellar compartmental organization, we mapped the PC birthdate (or differentiation timing) in the entire cerebellar cortex. We used the birthdate-tagging system of neurog2-CreER (G2A) mice hybridized with the AldocV strain which clarifies the zebrin (aldolase C) longitudinal striped pattern.The pattern of the birthdate-dependent PC distribution was arranged consistently into longitudinally-oriented stripes throughout almost all lobules except for the nodulus, paraflocculus and flocculus, in which distinct stripes were observed.Boundaries of the PC birthdate stripes were found either in the middle or coincided with that of the zebrin stripes. PCs in each birthdate stripe were born in various periods between embryonic day (E) 10.0 and E 13.5.In the vermis, PCs were chronologically distributed from lateral to medial stripes. In the paravermis, PCs of early birthdates were distributed in the long lateral zebrin-positive stripe (stripe 4+//5+) and the medially neighboring narrow zebrin-negative substripe (3d-//e2-), while PCs of late birthdates were distributed in the rest of all paravermal areas. In the hemisphere, PCs of early and late birthdates were intermingled in the majority of areas.The results indicate that the birthdate of a PC is a partial determinant for the zebrin compartment in which it is located. However, the correlation between the PC birthdate and the zebrin compartmentalization is not simple, and distinct among the vermis, paravermis, hemisphere, nodulus, and flocculus.HighlightsBirthdates of Purkinje cells (PCs) were mapped on the cerebellar zebrin striped pattern by using Neurog2-CreER (G2A) mice.The vermis, paravermis, hemisphere, nodulus, and flocculus had distinct longitudinally-striped patterns of PC birthdate distribution.PCs in each birthdate stripe were born in various periods between embryonic day (E) 10.0 and E 13.5.Boundaries of PC birthdate distributions were located at the boundaries of zebrin stripes or in the middle of a zebrin stripe.The results indicate that the PC birthdate is a partial determinant for the zebrin compartment in which a PC is located.


2020 ◽  
Vol 95 (1) ◽  
pp. 45-55
Author(s):  
Cristián  Gutiérrez-Ibáñez  ◽  
Max R. Dannish ◽  
Tobias Kohl ◽  
Lutz  Kettler ◽  
Catherine E. Carr ◽  
...  

While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII–) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII–) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/– stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).


2007 ◽  
Vol 97 (2) ◽  
pp. 1588-1599 ◽  
Author(s):  
Kenji Yamamoto ◽  
Mitsuo Kawato ◽  
Shinya Kotosaka ◽  
Shigeru Kitazawa

It is controversial whether simple-spike activity of cerebellar Purkinje cells during arm movements encodes movement kinematics like velocity or dynamics like muscle activities. To examine this issue, we trained monkeys to flex or extend the elbow by 45° in 400 ms under resistive and assistive force fields but without altering kinematics. During the task movements after training, simple-spike discharges were recorded in the intermediate part of the cerebellum in lobules V–VI, and electromyographic activity was recorded from arm muscles. Velocity profiles (kinematics) in the two force fields were almost identical to each other, whereas not only the electromyographic activities (dynamics) but also simple-spike activities in many Purkinje cells differed distinctly depending on the type of force field. Simple-spike activities encoded much larger mutual information with the type of force field than that with the residual small difference in the height of peak velocity. The difference in simple-spike activities averaged over the recorded Purkinje-cells increased ∼40 ms before the appearance of the difference in electromyographic activities between the two force fields, suggesting that the difference of simple-spike activities could be the origin of the difference of muscle activities. Simple-spike activity of many Purkinje cells correlated with electromyographic activity with a lead of ∼80 ms, and these neurons had little overlap with another group of neurons the simple-spike activity of which correlated with velocity profiles. These results show that simple-spike activity of at least a group of Purkinje cells in the intermediate part of cerebellar lobules V–VI encodes movement dynamics.


2016 ◽  
Vol 88 (3-4) ◽  
pp. 177-186 ◽  
Author(s):  
Douglas R. Wylie ◽  
Daniel Hoops ◽  
Joel W. Aspden ◽  
Andrew N. Iwaniuk

Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles.


2021 ◽  
Vol 4 (8) ◽  
pp. e202101028
Author(s):  
Zhicheng Cai ◽  
Yueying He ◽  
Sirui Liu ◽  
Yue Xue ◽  
Hui Quan ◽  
...  

Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.


Sign in / Sign up

Export Citation Format

Share Document