chromatin packing
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 118 (46) ◽  
pp. e2109921118
Author(s):  
Daeho Sung ◽  
Chan Lim ◽  
Masatoshi Takagi ◽  
Chulho Jung ◽  
Heemin Lee ◽  
...  

DNA molecules are atomic-scale information storage molecules that promote reliable information transfer via fault-free repetitions of replications and transcriptions. Remarkable accuracy of compacting a few-meters-long DNA into a micrometer-scale object, and the reverse, makes the chromosome one of the most intriguing structures from both physical and biological viewpoints. However, its three-dimensional (3D) structure remains elusive with challenges in observing native structures of specimens at tens-of-nanometers resolution. Here, using cryogenic coherent X-ray diffraction imaging, we succeeded in obtaining nanoscale 3D structures of metaphase chromosomes that exhibited a random distribution of electron density without characteristics of high-order folding structures. Scaling analysis of the chromosomes, compared with a model structure having the same density profile as the experimental results, has discovered the fractal nature of density distributions. Quantitative 3D density maps, corroborated by molecular dynamics simulations, reveal that internal structures of chromosomes conform to diffusion-limited aggregation behavior, which indicates that 3D chromatin packing occurs via stochastic processes.


Author(s):  
Hai-Jun Wang ◽  
Xu Zhao ◽  
Chi Xu ◽  
Yang Liu ◽  
Ying Liu ◽  
...  

The origin of the nucleus remains a great mystery in life science, although nearly two centuries have passed since the discovery of nuclei. To date, studies of eukaryogenesis have focused largely on micro-evolutionary explanations. Here, we examined macro-patterns of C-values (the total amount of DNA within the haploid chromosome set of an organism) for over 110,000 species and the chromosome numbers for over 11,000 species and their potential links with the state of atmospheric oxidation over geological time. Eukaryogenesis was in sync with an over 2.5 order-of-magnitude increase in genome size from prokaryote to eukaryote, and also with a rapid rise of atmospheric oxidation, suggesting that eukaryogenesis would have resulted from a regime shift of genomes driven by the oxidation-driven complexification and structuralization (e.g. chromatin packing).


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5606
Author(s):  
Laura Márquez-Cantudo ◽  
Ana Ramos ◽  
Claire Coderch ◽  
Beatriz de Pascual-Teresa

Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.


2021 ◽  
Vol 4 (8) ◽  
pp. e202101028
Author(s):  
Zhicheng Cai ◽  
Yueying He ◽  
Sirui Liu ◽  
Yue Xue ◽  
Hui Quan ◽  
...  

Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Samuel Bowerman ◽  
Jeff Wereszczynski ◽  
Karolin Luger

Eukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ~147 DNA base pairs into nucleosomes, archaeal histones form ‘nucleosome-like’ complexes that continuously wind between 60 and 500 base pairs of DNA (‘archaeasomes’), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90o out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility.


2021 ◽  
Vol 7 (1) ◽  
pp. eabe4310
Author(s):  
Yue Li ◽  
Adam Eshein ◽  
Ranya K.A. Virk ◽  
Aya Eid ◽  
Wenli Wu ◽  
...  

Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.


2020 ◽  
Author(s):  
Shivangi Yadav ◽  
Ranya Virk ◽  
Carolina Chung ◽  
David Van Derway ◽  
Duojian Chen ◽  
...  

Improved understanding of local breast biology that favors the development of estrogen receptor-negative (ER-) breast cancer (BC) would foster better prevention strategies. We have previously shown that overexpression of specific lipid metabolism genes is associated with the development of ER- BC. We now report results of exposure of MCF-10A cells and mammary organoids to representative medium- and long-chain polyunsaturated fatty acids. This exposure caused a dynamic and profound change in gene expression, accompanied by changes in chromatin packing density, chromatin accessibility and histone posttranslational modifications (PTMs). We identified 38 metabolic reactions that showed significantly increased activity, including reactions related to one-carbon metabolism. Among these reactions are those that produce S-adenosyl-L-methionine for histone PTMs. Utilizing both an in-vitro model and samples from women at high risk for ER- BC, we show that lipid exposure engenders gene expression, signaling pathway activation, and histone marks associated with the development of ER- BC.


2020 ◽  
Author(s):  
Samuel Bowerman ◽  
Jeff Wereszczynski ◽  
Karolin Luger

AbstractEukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ∼147 DNA base pairs into nucleosomes, archaeal histones form “nucleosome-like” complexes that continuously wind between 60 - 500 base pairs of DNA (“archaeasomes”), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90° out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility.


2020 ◽  
Vol 45 (17) ◽  
pp. 4810
Author(s):  
Aya Eid ◽  
Adam Eshein ◽  
Yue Li ◽  
Ranya Virk ◽  
David Van Derway ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document