scholarly journals TAF7L modulates brown adipose tissue formation

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.

Lipids ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 265-276 ◽  
Author(s):  
Nan Wang ◽  
Hong‐yuan Lu ◽  
Xiang Li ◽  
Ya‐jie Du ◽  
Wei‐hong Meng ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesca-Maria Raffaelli ◽  
Julia Resch ◽  
Rebecca Oelkrug ◽  
K. Alexander Iwen ◽  
Jens Mittag

AbstractBrown adipose tissue (BAT) thermogenesis is considered a potential target for treatment of obesity and diabetes. In vitro data suggest dopamine receptor signaling as a promising approach; however, the biological relevance of dopamine receptors in the direct activation of BAT thermogenesis in vivo remains unclear. We investigated BAT thermogenesis in vivo in mice using peripheral administration of D1-agonist SKF38393 or D2-agonist Sumanirole, infrared thermography, and in-depth molecular analyses of potential target tissues; and ex vivo in BAT explants to identify direct effects on key thermogenic markers. Acute in vivo treatment with the D1- or D2-agonist caused a short spike or brief decrease in BAT temperature, respectively. However, repeated daily administration did not induce lasting effects on BAT thermogenesis. Likewise, neither agonist directly affected Ucp1 or Dio2 mRNA expression in BAT explants. Taken together, the investigated agonists do not seem to exert lasting and physiologically relevant effects on BAT thermogenesis after peripheral administration, demonstrating that D1- and D2-receptors in iBAT are unlikely to constitute targets for obesity treatment via BAT activation.


2003 ◽  
Vol 285 (1) ◽  
pp. R177-R182 ◽  
Author(s):  
W. T. L. Festuccia ◽  
N. H. Kawashita ◽  
M. A. R. Garofalo ◽  
M. A. F. Moura ◽  
S. R. C. Brito ◽  
...  

Brown adipose tissue (BAT) glyceroneogenesis was evaluated in rats either fasted for 48 h or with streptozotocin-diabetes induced 3 days previously or adapted for 20 days to a high-protein, carbohydrate-free (HP) diet, conditions in which BAT glucose utilization is reduced. The three treatments induced an increase in BAT glyceroneogenic activity, evidenced by increased rates of incorporation of [1-14C]pyruvate into triacylglycerol (TAG)-glycerol in vitro and a marked, threefold increase in the activity of BAT phospho enolpyruvate carboxykinase (PEPCK). BAT glycerokinase activity was not significantly affected by fasting or diabetes. After unilateral BAT denervation of rats fed either the HP or a balanced diet, glyceroneogenesis activity increased in denervated pads, evidenced by increased rates of nonglucose carbon incorporation into TAG-glycerol in vivo (difference between 3H2O and [14C]glucose incorporations) and of [1-14C]pyruvate in vitro. PEPCK activity was not significantly affected by denervation. The data suggest that BAT glyceroneogenesis is not under sympathetic control but is sensitive to hormonal/metabolic factors. In situations of reduced glucose use there is an increase in BAT glyceroneogenesis that may compensate the decreased generation of glycerol-3-phosphate from the hexose.


1968 ◽  
Vol 46 (6) ◽  
pp. 897-902 ◽  
Author(s):  
Barbara A. Horwitz ◽  
Paul A. Herd ◽  
Robert Emrie Smith

Examination of the in vivo effect of 2,4-dinitrophenol (DNP) on the brown adipose tissue of cold-exposed rats, as well as the in vitro response of this tissue to DNP and dicumarol, indicates that brown fat does possess a functional electron transport coupled phosphorylating system. Moreover, the fact that a norepinephrine-induced thermogenic response (in vivo) can be elicited from the brown fat after DNP administration implies that the effect of norepinephrine (NE) is not primarily due either to a physiological uncoupling by fatty acids, the level of which is increased by NE, or to stimulation of an ATP-ase system. Alternatively, our data suggest that under basal conditions (i.e. when the animal is not stimulated by cold stress or NE), the heat production (oxygen consumption) of the brown fat is limited by the availability of substrate rather than ADP. It is thus proposed that the thermogenic effect of NE results from the stimulation of lipolysis and an attendant increase of substrate available for oxidation.


2013 ◽  
Vol 51 (3) ◽  
pp. T75-T85 ◽  
Author(s):  
Stefania Carobbio ◽  
Barry Rosen ◽  
Antonio Vidal-Puig

Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models bothin vivoandin vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.


2012 ◽  
Vol 302 (1) ◽  
pp. R118-R125 ◽  
Author(s):  
Naoya Kitao ◽  
Masaaki Hashimoto

Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β3-adrenergic receptor. In this study, we investigated the role of the β3-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β3-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β3-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β3-receptor mechanism at lower temperatures.


2009 ◽  
Vol 296 (5) ◽  
pp. R1327-R1335 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Véronique Turcotte ◽  
Mathieu Laplante ◽  
Meltem Sariahmetoglu ◽  
...  

We investigated the mechanisms whereby peroxisome proliferator-activated receptor-γ (PPARγ) agonism affects glucose and lipid metabolism in brown adipose tissue (BAT) by studying the impact of PPARγ activation on BAT glucose uptake and metabolism, lipogenesis, and mRNA levels plus activities of enzymes involved in triacylglycerol (TAG) synthesis. Interscapular BAT of rats treated or not with rosiglitazone (15 mg·kg−1·day−1, 7 days) was evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (PAP or lipin-1), and diacylglycerol acyltransferase (DGAT). Rosiglitazone increased BAT mass without affecting whole tissue glucose uptake. BAT glycogen content (−80%), its synthesis from glucose (−50%), and mRNA levels of UDP-glucose pyrophosphorylase (−40%), which generates UDP-linked glucose for glycogen synthesis, were all reduced by rosiglitazone. In contrast, BAT TAG-glycerol synthesis in vivo and glucose incorporation into TAG-glycerol in vitro were stimulated by the agonist along with the activities and mRNA levels of glycerol 3-phosphate-generating phosphoenolpyruvate carboxykinase and glycerokinase. Furthermore, rosiglitazone markedly increased the activities of GPAT and DGAT but not those of lipin-1-mediated PAP-1, enzymes involved in the sequential acylation of glycerol 3-phosphate and TAG synthesis. Because an adequate supply of fatty acids is essential for BAT nonshivering thermogenesis, the enhanced ability of BAT to synthesize TAG under PPARγ activation may constitute an important mechanism by which lipid substrates are stored in preparation for an eventual thermogenic activation.


2018 ◽  
Author(s):  
Essam A. Assali ◽  
Anthony E. Jones ◽  
Michaela Veliova ◽  
Mahmoud Taha ◽  
Nathanael Miller ◽  
...  

AbstractA sharp increase in mitochondrial Ca2+ marks the activation of the brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-ablated brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging and VO2 measurements confirm a BAT specific thermogenic defect in NCLX-null mice.We show that mitochondrial Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to remarkable mitochondrial swelling, Cytochrome c release and cell death in BAT. However, treatment with mPTP inhibitors rescue mitochondrial respiratory function and thermogenesis in NCLX-null BA, in vitro and in vivo.Our findings identify a novel pathway enabling non-lethal mitochondrial Ca2+ elevation during adrenergic stimulation of uncoupled respiration. Deletion of NCLX transforms the adrenergic pathway responsible for the stimulation of thermogenesis into a death pathway.


2018 ◽  
Vol 20 (9) ◽  
pp. 2264-2273 ◽  
Author(s):  
Peter Breining ◽  
Jonas B. Jensen ◽  
Elias I. Sundelin ◽  
Lars C. Gormsen ◽  
Steen Jakobsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document