scholarly journals Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Lauren LeBon ◽  
Tom V Lee ◽  
David Sprinzak ◽  
Hamed Jafar-Nejad ◽  
Michael B Elowitz

The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

2016 ◽  
Vol 36 (44) ◽  
pp. 11362-11373 ◽  
Author(s):  
Yan Fan ◽  
Xiang Gao ◽  
Jinhui Chen ◽  
Ying Liu ◽  
Johnny J. He

2014 ◽  
Vol 191 (4S) ◽  
Author(s):  
Ahmed Mohamed ◽  
Lakshmi Ravindranath ◽  
Shilpa Katta ◽  
Shyh-Han Tan ◽  
Yongmei Chen ◽  
...  

2013 ◽  
Vol 168 (6) ◽  
pp. R95-R103 ◽  
Author(s):  
Stefano Zanotti ◽  
Ernesto Canalis

Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligandJAG1or ofNOTCH2are associated with Alagille syndrome, and activating mutations inNOTCH2are associated with Hajdu–Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases.


2001 ◽  
Vol 21 (13) ◽  
pp. 4337-4346 ◽  
Author(s):  
Motoo Kitagawa ◽  
Toshinao Oyama ◽  
Taichi Kawashima ◽  
Barry Yedvobnick ◽  
Anumeha Kumar ◽  
...  

ABSTRACT Mastermind (Mam) has been implicated as an important positive regulator of the Notch signaling pathway by genetic studies usingDrosophila melanogaster. Here we describe a biochemical mechanism of action of Mam within the Notch signaling pathway. Expression of a human sequence related to Drosophila Mam (hMam-1) in mammalian cells augments induction of Hairy Enhancer of split (HES) promoters by Notch signaling. hMam-1 stabilizes and participates in the DNA binding complex of the intracellular domain of human Notch1 and a CSL protein. Truncated versions of hMam-1 that can maintain an association with the complex behave in a dominant negative fashion and depress transactivation. Furthermore,Drosophila Mam forms a similar complex with the intracellular domain of Drosophila Notch andDrosophila CSL protein during activation of Enhancer of split, the Drosophila counterpart ofHES. These results indicate that Mam is an essential component of the transcriptional apparatus of Notch signaling.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Nagarajan Nandagopal ◽  
Leah A Santat ◽  
Michael B Elowitz

The Notch signaling pathway consists of transmembrane ligands and receptors that can interact both within the same cell (cis) and across cell boundaries (trans). Previous work has shown that cis-interactions act to inhibit productive signaling. Here, by analyzing Notch activation in single cells while controlling cell density and ligand expression level, we show that cis-ligands can also activate Notch receptors. This cis-activation process resembles trans-activation in its ligand level dependence, susceptibility to cis-inhibition, and sensitivity to Fringe modification. Cis-activation occurred for multiple ligand-receptor pairs, in diverse cell types, and affected survival in neural stem cells. Finally, mathematical modeling shows how cis-activation could potentially expand the capabilities of Notch signaling, for example enabling ‘negative’ (repressive) signaling. These results establish cis-activation as an additional mode of signaling in the Notch pathway, and should contribute to a more complete understanding of how Notch signaling functions in developmental, physiological, and biomedical contexts.


2018 ◽  
Vol 115 (36) ◽  
pp. E8395-E8402 ◽  
Author(s):  
Hideyuki Takeuchi ◽  
Michael Schneider ◽  
Daniel B. Williamson ◽  
Atsuko Ito ◽  
Megumi Takeuchi ◽  
...  

The Notch-signaling pathway is normally activated by Notch–ligand interactions. A recent structural analysis suggested that a novel O-linked hexose modification on serine 435 of the mammalian NOTCH1 core ligand-binding domain lies at the interface with its ligands. This serine occurs between conserved cysteines 3 and 4 of Epidermal Growth Factor-like (EGF) repeat 11 of NOTCH1, a site distinct from those modified by protein O-glucosyltransferase 1 (POGLUT1), suggesting that a different enzyme is responsible. Here, we identify two novel protein O-glucosyltransferases, POGLUT2 and POGLUT3 (formerly KDELC1 and KDELC2, respectively), which transfer O-glucose (O-Glc) from UDP-Glc to serine 435. Mass spectrometric analysis of NOTCH1 produced in HEK293T cells lacking POGLUT2, POGLUT3, or both genes showed that either POGLUT2 or POGLUT3 can add this novel O-Glc modification. EGF11 of NOTCH2 does not have a serine residue in the same location for this O-glucosylation, but EGF10 of NOTCH3 (homologous to EGF11 in NOTCH1 and -2) is also modified at the same position. Comparison of the sites suggests a consensus sequence for modification. In vitro assays with POGLUT2 and POGLUT3 showed that both enzymes modified only properly folded EGF repeats and displayed distinct acceptor specificities toward NOTCH1 EGF11 and NOTCH3 EGF10. Mutation of the O-Glc modification site on EGF11 (serine 435) in combination with sensitizing O-fucose mutations in EGF8 or EGF12 affected cell-surface presentation of NOTCH1 or reduced activation of NOTCH1 by Delta-like1, respectively. This study identifies a previously undescribed mechanism for fine-tuning the Notch-signaling pathway in mammals.


2018 ◽  
Author(s):  
Nagarajan Nandagopal ◽  
Leah A. Santat ◽  
Michael B. Elowitz

AbstractThe Notch signaling pathway consists of transmembrane ligands and receptors that can interact both within the same cell (cis) and across cell boundaries (trans). Previous work has shown that cis-interactions act to inhibit productive signaling. Here, by analyzing Notch activation in single cells while controlling cell density and ligand expression level, we show that cis-ligands can in fact activate Notch receptors. This cis-activation process resembles trans-activation in its ligand level dependence, susceptibility to cis-inhibition, and sensitivity to Fringe modification. Cis-activation occurred for multiple ligand-receptor pairs, in diverse cell types, and affected survival and differentiation in neural stem cells. Finally, mathematical modeling shows how cis-activation could potentially expand the capabilities of Notch signaling, for example enabling “negative” signaling. These results establish cis-activation as a prevalent mode of signaling in the Notch pathway, and should contribute to a more complete understanding of how Notch signaling functions in developmental, physiological, and biomedical contexts.


2013 ◽  
Vol 13 (9) ◽  
pp. 957-962 ◽  
Author(s):  
Yumei Li ◽  
Jia Ma ◽  
Xiujuan Qian ◽  
Qiong Wu ◽  
Jun Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document