scholarly journals Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Nicolas Baeyens ◽  
Stefania Nicoli ◽  
Brian G Coon ◽  
Tyler D Ross ◽  
Koen Van den Dries ◽  
...  

Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo.

2012 ◽  
Vol 7 (1) ◽  
pp. 110-114 ◽  
Author(s):  
LIANG-LIANG SUN ◽  
LE ZHANG ◽  
XIANG-LAN MENG ◽  
FENG ZHANG ◽  
YUN ZHAO ◽  
...  

2013 ◽  
Vol 74 ◽  
pp. 36-40 ◽  
Author(s):  
Feng Zhang ◽  
Le Zhang ◽  
Liang-liang Sun ◽  
Xiang-lan Meng ◽  
Yun Zhao ◽  
...  

1996 ◽  
Vol 271 (3) ◽  
pp. C994-C1000 ◽  
Author(s):  
S. Li ◽  
R. S. Piotrowicz ◽  
E. G. Levin ◽  
Y. J. Shyy ◽  
S. Chien

The small molecular mass heat shock protein of 27 kDa (HSP27) has been shown to influence actin filament dynamics and endothelial cell behavior in ways similar to those observed during laminar flow. We have employed human umbilical vein endothelial cells to determine whether fluid shear stress affects HSP27 expression or phosphorylation. After a shear stress of 16 dyn/cm2, HSP27 became more highly phosphorylated, with maximum increase in phosphorylation levels (3-fold) attained by 30 min and sustained for at least 20 h. HSP27 antigen levels did not change; however, HSP27 mRNA levels decreased by 20% after 16 h. In bovine aortic endothelial cells stably transfected with the wild-type human HSP27 gene, shear stress induced the phosphorylation of both the exogenous human HSP27 and the endogenous bovine HSP25. The product of a transfected mutant HSP27 gene in which the putative phosphorylation sites Ser-15, Ser-78, and Ser-82 had been replaced with Gly was not phosphorylated. Thus the modulation of HSP27 and its activity by shear stress is mediated through a posttranslational mechanism and differs from the shear stress induction of immediate early genes at the level of transcription.


Author(s):  
Hojin Kang ◽  
Kayla J. Bayless ◽  
Roland Kaunas

We have previously developed a cell culture model to study the effects of angiogenic factors, such as sphingosine-1-phosphate (S1P), on the invasion of endothelial cells into the underlying extracellular matrix. In addition to biochemical stimuli, vascular endothelial cells are subjected to fluid shear stress due to blood flow. The present study is aimed at determining the effects of fluid shear stress on endothelial cell invasion into collagen gels. A device was constructed to apply well-defined fluid shear stresses to confluent human umbilical vein endothelial cells (HUVECs) seeded on collagen gels. Fluid shear stress induced significant increases in cell invasion with a maximal induction at ∼5 dyn/cm2. These results provide evidence that fluid shear stress is a significant stimulus for endothelial cell invasion and may play a role in regulating angiogenesis.


2000 ◽  
Vol 20 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Boris-Wolfgang Hochleitner ◽  
Elisabeth-Olga Hochleitner ◽  
Peter Obrist ◽  
Thomas Eberl ◽  
Albert Amberger ◽  
...  

2002 ◽  
Vol 12 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Scott M. Wasserman ◽  
Fuad Mehraban ◽  
Laszlo G. Komuves ◽  
Ruey-Bing Yang ◽  
James E. Tomlinson ◽  
...  

Biomechanical forces can modulate endothelial phenotype through changes in gene expression. We hypothesized that physiological laminar shear stresses (LSS) act as differentiative stimuli on endothelial cells (EC) to alter gene expression, creating an antioxidant, anti-apoptotic and anti-proliferative environment. The transcriptional profile of cultured human umbilical vein endothelial cells (HUVEC) exposed to LSS was evaluated by GeneCalling; 107 genes demonstrated at least a twofold change in expression at 24 h (LSS vs. static). These flow-responsive genes represent a limited number of functional clusters that include transcription factors, antioxidants, signaling molecules, cell cycle regulators, and genes involved in cellular differentiation. Immunohistochemistry and in situ hybridization confirmed that many of these flow-responsive genes, including the novel basic helix-loop-helix transcription factor Hath6, are expressed in EC in vivo. Thus these data identify a limited set of flow-responsive genes expressed in the endothelium that may be responsible for the establishment and maintenance of the flow-adapted endothelial phenotype in vivo.


Sign in / Sign up

Export Citation Format

Share Document