scholarly journals Cascade of neural processing orchestrates cognitive control in human frontal cortex

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Hanlin Tang ◽  
Hsiang-Yu Yu ◽  
Chien-Chen Chou ◽  
Nathan E Crone ◽  
Joseph R Madsen ◽  
...  

Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex.

2019 ◽  
Vol 46 (3) ◽  
pp. 690-698
Author(s):  
Cassidy L Moody ◽  
Adam J Funk ◽  
Emily Devine ◽  
Ryan C Devore Homan ◽  
Detlev Boison ◽  
...  

Abstract The adenosine hypothesis of schizophrenia posits that reduced availability of the neuromodulator adenosine contributes to dysregulation of dopamine and glutamate transmission and the symptoms associated with schizophrenia. It has been proposed that increased expression of the enzyme adenosine kinase (ADK) may drive hypofunction of the adenosine system. While animal models of ADK overexpression support such a role for altered ADK, the expression of ADK in schizophrenia has yet to be examined. In this study, we assayed ADK gene and protein expression in frontocortical tissue from schizophrenia subjects. In the dorsolateral prefrontal cortex (DLPFC), ADK-long and -short splice variant expression was not significantly altered in schizophrenia compared to controls. There was also no significant difference in ADK splice variant expression in the frontal cortex of rats treated chronically with haloperidol-decanoate, in a study to identify the effect of antipsychotics on ADK gene expression. ADK protein expression was not significantly altered in the DLPFC or anterior cingulate cortex (ACC). There was no significant effect of antipsychotic medication on ADK protein expression in the DLPFC or ACC. Overall, our results suggest that increased ADK expression does not contribute to hypofunction of the adenosine system in schizophrenia and that alternative mechanisms are involved in dysregulation of this system in schizophrenia.


2021 ◽  
Vol 118 (35) ◽  
pp. e2014781118
Author(s):  
Atsushi Fujimoto ◽  
Elisabeth A. Murray ◽  
Peter H. Rudebeck

Decision-making and representations of arousal are intimately linked. Behavioral investigations have classically shown that either too little or too much bodily arousal is detrimental to decision-making, indicating that there is an inverted “U” relationship between bodily arousal and performance. How these processes interact at the level of single neurons as well as the neural circuits involved are unclear. Here we recorded neural activity from orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaque monkeys while they made reward-guided decisions. Heart rate (HR) was also recorded and used as a proxy for bodily arousal. Recordings were made both before and after subjects received excitotoxic lesions of the bilateral amygdala. In intact monkeys, higher HR facilitated reaction times (RTs). Concurrently, a set of neurons in OFC and dACC selectively encoded trial-by-trial variations in HR independent of reward value. After amygdala lesions, HR increased, and the relationship between HR and RTs was altered. Concurrent with this change, there was an increase in the proportion of dACC neurons encoding HR. Applying a population-coding analysis, we show that after bilateral amygdala lesions, the balance of encoding in dACC is skewed away from signaling either reward value or choice direction toward HR coding around the time that choices are made. Taken together, the present results provide insight into how bodily arousal and decision-making are signaled in frontal cortex.


2021 ◽  
pp. 1-29
Author(s):  
S. J. Katarina Slama ◽  
Richard Jimenez ◽  
Sujayam Saha ◽  
David King-Stephens ◽  
Kenneth D. Laxer ◽  
...  

Abstract Visual search is a fundamental human behavior, providing a gateway to understanding other sensory domains as well as the role of search in higher-order cognition. Search has been proposed to include two component processes: inefficient search (search) and efficient search (pop-out). According to extant research, these two processes map onto two separable neural systems located in the frontal and parietal association cortices. In this study, we use intracranial recordings from 23 participants to delineate the neural correlates of search and pop-out with an unprecedented combination of spatiotemporal resolution and coverage across cortical and subcortical structures. First, we demonstrate a role for the medial temporal lobe in visual search, on par with engagement in frontal and parietal association cortex. Second, we show a gradient of increasing engagement over anatomical space from dorsal to ventral lateral frontal cortex. Third, we confirm previous intracranial work demonstrating nearly complete overlap in neural engagement across cortical regions in search and pop-out. We further demonstrate pop-out selectivity, manifesting as activity increase in pop-out as compared to search, in a distributed set of sites including frontal cortex. This result is at odds with the view that pop-out is implemented in low-level visual cortex or parietal cortex alone. Finally, we affirm a central role for the right lateral frontal cortex in search.


2018 ◽  
Author(s):  
Liya Ma ◽  
Jason L. Chan ◽  
Kevin Johnston ◽  
Stephen G. Lomber ◽  
Stefan Everling

SUMMARYIn primates, both the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (dlPFC) are key regions of the frontoparietal cognitive control network. To study the role of the dACC and its communication with the dlPFC in cognitive control, we recorded the local field potentials from the dlPFC before and during the reversible deactivation of the dACC, in macaque monkeys engaging in uncued switches between two stimulus-response rules. Cryogenic dACC deactivation impaired response accuracy during rule-maintenance, but not rule-switching, which coincided with a reduction in the correct-error difference in dlPFC beta activities specifically during maintenance of the more challenging rule. During both rule switching and maintenance, dACC deactivation prolonged the animals’ reaction time and reduced task-related theta/alpha activities in the dlPFC; it also weakened dlPFC theta-gamma phase-amplitude modulation. Thus, the dACC and its interaction with the dlPFC plays a critical role in the maintenance of a new, challenging rule.


2010 ◽  
Vol 22 (12) ◽  
pp. 2758-2767 ◽  
Author(s):  
Chris Blais ◽  
Silvia Bunge

How cognitive control is recruited and implemented has become a major focus of researchers in cognitive psychology and neuroscience. Current theories posit that cognitive control operates at the level of general rules—for example, in a Stroop task, “attend to the color of the stimulus.” Here we report behavioral evidence suggesting that cognitive control is implemented much more locally, operating at the level of specific stimuli appearing in a task block. In addition, we report neural evidence that many of the regions implicated in cognitive control on the Stroop task, including anterior cingulate cortex and dorsolateral prefrontal cortex, operate at a local level.


Sign in / Sign up

Export Citation Format

Share Document