scholarly journals Author response: A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging

Author(s):  
Nicholas James Sofroniew ◽  
Daniel Flickinger ◽  
Jonathan King ◽  
Karel Svoboda
2008 ◽  
Vol 33 (12) ◽  
pp. 1333 ◽  
Author(s):  
Hongchun Bao ◽  
John Allen ◽  
Robert Pattie ◽  
Rod Vance ◽  
Min Gu

Author(s):  
Che-Hang Yu ◽  
Jeffrey N. Stirman ◽  
Yiyi Yu ◽  
Riichiro Hira ◽  
Spencer L. Smith

AbstractImaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large Field-of-view Two-Photon imaging (Diesel2p). Combining novel optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view (∼ 25 mm2) with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Che-Hang Yu ◽  
Jeffrey N. Stirman ◽  
Yiyi Yu ◽  
Riichiro Hira ◽  
Spencer L. Smith

AbstractImaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p). Combining optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view of ~25 mm2, encompassing distances up to 7 mm, with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2005 ◽  
Vol 288 (6) ◽  
pp. F1084-F1089 ◽  
Author(s):  
Bruce A. Molitoris ◽  
Ruben M. Sandoval

Recent advances in microscopy and optics, computer sciences, and the available fluorophores used to label molecules of interest have empowered investigators to utilize intravital two-photon microscopy to study the dynamic events within the functioning kidney. This emerging technique enables investigators to follow functional and structural alterations with subcellular resolution within the same field of view over seconds to weeks. This approach invigorates the validity of data and facilitates analysis and interpretation as trends are more readily determined when one is more closely monitoring indicative physiological parameters. Therefore, in this review we emphasize how specific approaches will enable studies into glomerular permeability, proximal tubule endocytosis, and microvascular function within the kidney. We attempt to show how visual data can be quantified, thus allowing enhanced understanding of the process under study. Finally, emphasis is given to the possible future opportunities of this technology and its present limitations.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7744
Author(s):  
Ye Tian ◽  
Ming Wei ◽  
Lijun Wang ◽  
Yuankai Hong ◽  
Dan Luo ◽  
...  

Due to the unique advantages of two-photon technology and time-resolved imaging technology in the biomedical field, attention has been paid to them. Gold clusters possess excellent physicochemical properties and low biotoxicity, which make them greatly advantageous in biological imaging, especially for in vivo animal imaging. A gold nanocluster was coupled with dihydrolipoic acid to obtain a functionalized nanoprobe; the material displayed significant features, including a large two-photon absorption cross-section (up to 1.59 × 105 GM) and prolonged fluorescence lifetime (>300 ns). The two-photon and time-resolution techniques were used to perform cell imaging and in vivo imaging.


2021 ◽  
Author(s):  
Wenjun Shao ◽  
Ji Yi

Three-dimensional (3D) volumetric imaging of the human retina is instrumental to monitor and diagnose blinding conditions. Although coherent retinal imaging is well established by optical coherence tomography, it is still a large void for incoherent volumetric imaging in the human retina. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO), to fill that void and harness incoherent optical contrast in 3D. CoSLO uses oblique scanning laser and remote focusing to acquire depth signal in parallel, avoid the lengthy z-stacking, and image a large field of view (FOV). In addition, confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we achieved incoherent 3D human retinal imaging with >20° viewing angle within only 5 seconds. The depth resolution is ~45 microns in vivo. We demonstrated label-free incoherent contrast by CoSLO, revealing unique features in the retina. CoSLO will be an important technique for clinical care of retinal conditions and fundamental vision science, by offering unique volumetric incoherent contrasts.


2019 ◽  
Vol 89 ◽  
pp. 103019 ◽  
Author(s):  
Seo Hyeon Lee ◽  
Young Ho Choe ◽  
Rae Hyung Kang ◽  
Yu Rim Kim ◽  
Na Hee Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document