scholarly journals Decision letter: Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice

2016 ◽  
2016 ◽  
Author(s):  
Stephanie A Bucks ◽  
Brandon C Cox ◽  
Brittany A Vlosich ◽  
James P Manning ◽  
Tot B Nguyen ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Stephanie A Bucks ◽  
Brandon C Cox ◽  
Brittany A Vlosich ◽  
James P Manning ◽  
Tot B Nguyen ◽  
...  

Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.


2020 ◽  
Vol 21 (22) ◽  
pp. 8649
Author(s):  
Xin Deng ◽  
Zhengqing Hu

Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5–7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.


2020 ◽  
Vol 385 ◽  
pp. 107838 ◽  
Author(s):  
Kelli L. Hicks ◽  
Serena R. Wisner ◽  
Brandon C. Cox ◽  
Jennifer S. Stone

1979 ◽  
Vol 87 (6) ◽  
pp. 818-836 ◽  
Author(s):  
Joseph B. Nadol

Three human temporal bones with presbycusis affecting the basal turn of the cochlea were studied by light and electron microscopy. Conditions in two ears examined by light microscopy were typical of primary neural degeneration, with a descending audiometric pattern, loss of cochlear neurons in the basal turn, and preservation of the organ of Corti. Ultrastructural analysis revealed normal hair cells and marked degenerative changes of the remaining neural fibers, especially in the basal turn. These changes included a decrease in the number of synapses at the base of hair cells, accumulation of cellular debris in the spiral bundles, abnormalities of the dendritic fibers and their sheaths in the osseous spiral lamina, and degenerative changes in the spiral ganglion cells and axons. These changes were interpreted as an intermediate stage of degeneration prior to total loss of nerve fibers and ganglion cells as visualized by light microscopy. In the third ear the changes observed were typical of primary degeneration of hair and supporting cells in the basal turn with secondary neural degeneration. Additional observations at an ultrastructural level included maintenance of the tight junctions of the scala media despite loss of both hair and supporting cells, suggesting a capacity for cellular “healing” in the inner ear. Degenerative changes were found in the remaining neural fibers in the osseous spiral lamina. In addition, there was marked thickening of the basilar membrane in the basal turn, which consisted of an increased number of fibrils and an accumulation of amorphous osmiophilic material in the basilar membrane. This finding supports the concept that mechanical alterations may occur in presbycusis of the basal turn.


2004 ◽  
Vol 166 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Shin-ichiro Kitajiri ◽  
Kanehisa Fukumoto ◽  
Masaki Hata ◽  
Hiroyuki Sasaki ◽  
Tatsuya Katsuno ◽  
...  

Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx−/−) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset (∼2 wk), in the cochlea and vestibule of Rdx−/− mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx−/− mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx−/− mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx−/− mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins.


1997 ◽  
Vol 78 (4) ◽  
pp. 1913-1927 ◽  
Author(s):  
Sergio Masetto ◽  
Manning J. Correia

Masetto, Sergio and Manning J. Correia. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J. Neurophysiol. 78: 1913–1927, 1997. The whole cell patch-clamp technique in combination with the slice preparation was used to investigate the electrophysiological properties of pigeon semicircular canal sensory and supporting cells. These properties were also characterized in regenerating neuroepithelia of pigeons preinjected with streptomycin to kill the hair cells. Type II hair cells from each of the three semicircular canals showed similar, topographically related patterns of passive and active membrane properties. Hair cells located in the peripheral regions (zone I, near the planum semilunatum) had less negative resting potentials [0-current voltage in current-clamp mode ( V z) = −62.8 ± 8.7 mV, mean ± SD; n = 13] and smaller membrane capacitances ( C m = 5.0 ± 0.9 pF, n = 14) than cells of the intermediate (zone II; V z = −79.3 ± 7.5 mV, n = 3; C m = 5.9 ± 1.2 pF, n = 4) and central (zone III; V z = −68.0 ± 9.6 mV, n = 17; C m = 7.1 ± 1.5 pF, n = 18) regions. In peripheral hair cells, ionic currents were dominated by a rapidly activating/inactivating outward K+ current, presumably an A-type K+ current ( I KA). Little or no inwardly rectifying current was present in these cells. Conversely, ionic currents of central hair cells were dominated by a slowly activating/inactivating outward K+ current resembling a delayed rectifier K+ current ( I KD). Moreover, an inward rectifying current at voltages negative to −80 mV was present in all central cells. This current was composed of two components: a slowly activating, noninactivating component ( I h), described in photoreceptors and saccular hair cells, and a faster-activating, partially inactivating component ( I K1) also described in saccular hair cells in some species. I h and I K1 were sometimes independently expressed by hair cells. Hair cells located in the intermediate region (zone II) had ionic currents more similar to those of central hair cells than peripheral hair cells. Outward currents in intermediate hair cells activated only slightly more quickly than those of the cells of the central region, but much more slowly than those of the peripheral cells. Additionally, intermediate hair cells, like central hair cells, always expressed an inward rectifying current. The regional distribution of outward rectifying potassium conductances resulted in macroscopic currents differing in peak–to–steady state ratio. We quantified this by measuring the peak ( G p) and steady-state ( G s) slope conductance in the linear region of the current-voltage relationship (−40 to 0 mV) for the hair cells located in the different zones. G p/ G s average values (4.1 ± 2.1, n = 15) from currents in peripheral hair cells were higher than those from intermediate hair cells (2.3 ± 0.8, n = 4) and central hair cells(1.9 ± 0.8, n = 21). The statistically significant differences ( P < 0.001) in G p/ G s ratios could be accounted for by KA channels being preferentially expressed in peripheral hair cells. Hair cell electrophysiological properties in animals pretreated with streptomycin were investigated at ∼3 wk and ∼9–10 wk post injection sequence (PIS). At 3 wk PIS, hair cells (all zones combined) had a statistically significantly ( P < 0.001) lower C m (4.6 ± 1.1 pF, n = 24) and a statistically significantly ( P < 0.01) lower G p(48.4 ± 20.8 nS, n = 26) than control animals ( C m = 6.2 ± 1.6 pF, n = 36; G p = 66 ± 38.9 nS, n = 40). Regional differences in values of V z, as well as the distribution of outward and inward rectifying currents, seen in control animals, were still obvious. But, differences in the relative contribution of the expression of the different ionic current components changed. This result could be explained by a relative decrease in I KA compared with I KD during that interval of regeneration, which was particularly evident in peripheral hair cells. At 9–10 wk PIS, hair cells of all zones had membrane properties not statistically different ( P > 0.5) from those in untreated normal animals. C m was 6.1 ± 1.3 pF ( n = 30) and G p was 75.9 ± 36.6 nS ( n = 30). Thus it appears that during regeneration, avian semicircular canal type II hair cells are likely to recover all their functional properties. At 9–10 wk PIS, regenerated hair cells expressed the same macroscopic ionic currents and had the same topographic distribution as normal hair cells. Measurements obtained at 3 wk PIS suggest that regenerated hair cells come from smaller cells (smaller mean values of C m) endowed with fewer potassium channels (smaller mean values of G p). In addition, differences observed in peripheral hair cells' kinetics and G p/ G s ratios at 3 wk PIS suggest that different ionic channels follow different schedules of expression during hair cell regeneration. We recorded from nine supporting cells both in normal ( n = 5) and regenerating ( n = 4) epithelia. These cells had an average negative resting potential of V z = −49.5 ± 14.1 mV ( n = 9), but no obvious sign of voltage- and time-dependent ionic currents, except for a very weak inward rectification at very negative potentials, both in normal and streptomycin-recovering animals. Therefore, if all semicircular canal supporting cells are like the small sample we tested and if supporting cells are actually the progenitors of regenerating hair cells, then they must change shape, develop hair bundles, become reinnervated, and also acquire a complete set of ionic channels ex novo.


1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


1981 ◽  
Vol 89 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Scott A. Estrem ◽  
Richard W. Babin ◽  
Jai H. Ryu ◽  
Kenneth C. Moore

Cochleas from 12 guinea pigs were evaluated using light, scanning, and transmission electron microscopy after systemic administration of cis-diamminedichloroplatinum (cis-DDP). Administration of cis-DDP resulted in loss of the Preyer reflex and degeneration of outer hair cells (OHC) with increased dose. The OHC degeneration was most pronounced in the basal turns of the cochlea with greatest severity in the inner row. Ultrastructural evidence of OHC degeneration included dilatation of the parietal membranes, softening of the cuticular plate, increased vacuolization and increased numbers of lysosome-like bodies in the apical portion of the cell. Supporting cells appeared more sensitive than OHC. Alteration of supporting cell ultrastructure preceded detectable change in OHC. Injury to the supporting cells was noted with intracellular vesiculation and increased autophagocytosis.


2019 ◽  
Author(s):  
Jingyuan Zhang ◽  
Daxiang Na ◽  
Miriam Dilts ◽  
Kenneth S. Henry ◽  
Patricia M. White

AbstractNoise induced hearing loss (NIHL) affects over ten million adults in the United States, and there is no biological treatment to restore endogenous function after damage. We hypothesized that activation of signaling from ERBB2 receptors in cochlear supporting cells could mitigate NIHL damage. We used the Tet-On genetic expression system to drive a constitutively active variant of ERBB2 (CA-ERBB2) in cochlear supporting cells three days after permanent noise damage in young adult mice. Hearing thresholds were assessed with auditory brainstem response tests prior to noise damage, and hearing recovery was assessed over a three month period. We evaluated supporting cell proliferation, inner and outer hair cell (IHC and OHC) survival, synaptic preservation, and IHC cytoskeletal alterations with histological techniques. Mice harboring CA-ERBB2 capability had similar hearing thresholds to control littermates prior to and immediately after noise exposure, and incurred similar levels of permanent hearing loss. Two and three months after noise exposure, CA-ERBB2+ mice demonstrated a partial but significant reversal of NIHL threshold shifts at the lowest frequency tested, out of five frequencies (n=19 total mice, p=0.0015, ANOVA). We also observed improved IHC and OHC survival (n=7 total cochleae, p=5 × 10−5, Kruskal-Wallis rank sum test). There was no evidence for sustained supporting cell proliferation. Some mortality was associated with doxycycline and furosemide treatments to induce the Tet-ON system. These data suggest that ERBB2 signaling in supporting cells promotes HC repair and some functional recovery. Funded by NIH R01 DC014261, and grants from the Schmitt Foundation and UR Ventures.


Sign in / Sign up

Export Citation Format

Share Document