scholarly journals Author response: Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells

Author(s):  
Katalin Kerti-Szigeti ◽  
Zoltan Nusser
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Katalin Kerti-Szigeti ◽  
Zoltan Nusser

Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content.


2018 ◽  
Author(s):  
Alejandro Pan-Vazquez ◽  
Winnie Wefelmeyer ◽  
Victoria Gonzalez Sabater ◽  
Juan Burrone

AbstractGABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex1,2. However, the rules that govern the wiring of interneurons are not well understood3. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS)4. Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. In this study, we investigated the role of activity in the formation and plasticity of ChC synapses. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window resulted in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the AIS showed that axo-axonic synapses were depolarising during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted in an increase in axo-axonic synapses. We propose that the direction of ChC plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.


2005 ◽  
Vol 138 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Brian Dean ◽  
Elizabeth Scarr ◽  
Mark McLeod

2020 ◽  
Author(s):  
Xuanyuan Wu ◽  
Haixiang Li ◽  
Jiechang Huang ◽  
Cheng Xiao ◽  
Shuijin He

AbstractThe axon initial segment is a specialized structure that controls neuronal excitability by generating action potentials. Currently, AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated, but how AIS diameter is regulated remains elusive. Here we report that COUP-TFI is an essential regulator of AIS diameter in both developing and adult mouse neocortex. Embryonic ablation of COUP-TFI prevented expansion of AIS diameter that occurs during postnatal development in layer II/III pyramidal cells of the mouse motor cortex, thereby leading to an impairment of action potential generation. Inactivation of COUP-TFI in adult neurons also led to reduced AIS diameter and impaired action potential generation. In contrast to different developmental stages, single-cell ablation and global ablation produced opposite effects on spontaneous network in COUP-TFI-deficient neurons. Further, mice exhibited less anxiety-like behaviors after postnatal inactivation of COUP-TFI induced by tamoxifen. Our results demonstrate that COUP-TFI is indispensable for both expansion and maintenance of AIS diameter and that a change in AIS diameter fine-tunes synaptic inputs through a metaplasticity mechanism in the adult neocortex.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120518 ◽  
Author(s):  
Peter Somogyi ◽  
Linda Katona ◽  
Thomas Klausberger ◽  
Bálint Lasztóczi ◽  
Tim J. Viney

The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.


1995 ◽  
Vol 700 (1-2) ◽  
pp. 142-156 ◽  
Author(s):  
Bo Gao ◽  
Jean-Marc Fritschy ◽  
Robert Y. Moore

Sign in / Sign up

Export Citation Format

Share Document